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Motivation

• Quiver bundles arise as fixed points for the natural C∗-action on the

moduli space of Higgs bundles over a compact Riemann surface.

• Gothen and Nozad [GN19] introduced a quiver bundle whose polysta-

bility has important consequences on the deformation theory of the

moduli spaces of Holomorphic chains. This turns out to be an instance

of the notion of tensor product of quiver representations introduced

in this work.
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Basic Definitions



Quivers

• A quiver is a finite oriented graph, that is a tuple Q = (V ,E , h, t),

where h, t : E ! V .

• A path is a sequence of edges

p := α1 · · ·αk

such that hαj = tαj+1. We denote the trivial paths ei for all i ∈ V .
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Twisted representations

Let (X ,OX ) be a ringed space and M := {Mα}α∈E be a family of OX -

modules.

• A M -twisted representation of Q is a tuple E = ((Ei )i∈V , (φα :

Mα ⊗OX
Etα ! Ehα)α∈E ).

• A morphism f : E ! E ′ of twisted representations is given by a family

f = (fi : Ei ! E ′
i )i∈V for which the diagram

Mα ⊗OX
Etα Ehα

Mα ⊗OX
E ′
tα E ′

hα

φα

Id⊗ftα fhα

φ′
α

commutes.

• The category Rep(MQ) is abelian.

Remark
We can work instead with the full subcategories of representations in the

categories of coherent sheaves over a Kähler manifold or (quasi-)coherent

sheaves over a scheme.
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Higgs bundles as quiver representations

Let X be a compact Riemann surface.

A Higgs bundle over X is a pair

(E , φ : E ! E ⊗ KX ) for E ! X a holomorphic vector bundle and KX the

canonical line bundle of X .

One can think of such an object as a K∗
X -twisted quiver representation

of the so-called Jordan quiver, QJ .

•

The Jordan quiver QJ
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Twisted path algebra of a quiver

• For p = α1 · · ·αk a non-trivial path of Q, we define

Mp = Mα1 ⊗OX
· · · ⊗OX

Mαk

and for p = ei , we set

Mp = OX .

• The twisted path algebra of Q is the OX -module

TMAQ =
⊕
p path

Mp

with product rule given by

mp ·mq =

{
mp ⊗mq if hq = tp,

0 otherwise.
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Modules over the path algebra

• A left TMAQ -module is an OX -moduleM which is also a left TMAQ -

module.

• M is determined by an OX -linear map

µ : TMAQ ⊗OX
M ! M

for which the usual axioms of modules over algebras hold.

• Let M1, M2 ∈ TMAQ -mod. A morphism f : M1 ! M2 is a OX -

linear map such that the diagram

TMAQ ⊗OX
M1 M1

TMAQ ⊗OX
M2 M2

µ1

Id⊗f f

µ2

commutes.

• We denote this category as TMAQ -mod.
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Modules vs. Representations

Proposition [BBR20]

TMAQ -mod ≃ Rep(MQ)
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Representations with relations

• A relation on Q is a formal sum of the form∑
p path, |p|≥2
tp=i, hp=j

cp · p, cp ∈ OX (X )

where all but finitely many terms are zero.

• LetR be a set of relations and let IR any double-sided ideal of TMAQ

generated by a subset of

R(U) :=

{∑
cp ·mp|mp ∈ Mp(U)

}
,∀U ⊆ X open.

• For all path p and mp ∈ Mp(U), multiplication by mp gives a map

ψmp : Etp(U) ! Ehp(U).

• A twisted representation satisfies the relations inR if for all r =
∑

mp

generator of IR(U),∑
ψmp : Etp(U) ! Ehp(U) = 0.
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Modules vs. Representations revisited

Proposition

Restriction of scalars gives a full embedding of categories

TMAQ/IR-mod ↪! TMAQ -mod.

Theorem

There is an equivalence of categories between Rep(MQ,R) and

TMAQ/IR-mod such that the diagram of functors

Rep(MQ,R) TMAQ/IR-mod

Rep(MQ) TMAQ -mod≃

commute.
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Representations of tensor quivers



The tensor product quiver

• Let Q ′,Q ′′ be quivers. The tensor product quiver Q ′ ⊗ Q ′′ is the

quiver given by the following data: V = V ′ × V ′′, E = (V ′ × E ′′) ⊔
(E ′ × V ′′), h(α, j) = (hα, j) and so on.

• For instance

•1 •2α ⊗ •1 •2
β

=

•(2,1)

•(1,1) •(2,2)

•(1,2)

(2, β)(α, 1)

(1, β) (α, 2)
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Tensor products of path algebras

Proposition

There is an isomorphism of twisted path algebras

TMAQ′⊗Q′′/I ∼= TM ′AQ′ ⊗OX
TM ′′AQ′′ .

• M is the family of twisting modules given by M(α,j) := M ′
α and

M(i,β) := M ′′
β .

• I is the ideal of relations generated by all the differences

m(hα,β) ⊗m(α,tβ) −m(α,hβ) ⊗m(tα,β)

with

m(hα,β) = m(tα,β) ∈ M(hα,β)(U) = M(tα,β)(U) = M ′′
β (U)

m(α,hβ) = m(α,tβ) ∈ M(α,hβ)(U) = M(α,tβ)(U) = M ′
α(U)

and U ⊆ X open.
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Tensor products of quiver representations

Let E ′ ∈ Rep(M ′Q ′) and E ′′ ∈ Rep(M ′′Q ′′).

=⇒ We have ME′ ∈ TM ′AQ′ -mod and ME′′ ∈ TM ′′AQ′′-mod.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TM ′AQ′ ⊗OX

TM ′′AQ′′ mod-

ule.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TMAQ′⊗Q′′/I module.

=⇒ This TMAQ′⊗Q′′/I module corresponds to a representation of Q ′⊗Q ′′

with relations which we call the tensor product E ′ ⊗ E ′′.

13



Tensor products of quiver representations

Let E ′ ∈ Rep(M ′Q ′) and E ′′ ∈ Rep(M ′′Q ′′).

=⇒ We have ME′ ∈ TM ′AQ′ -mod and ME′′ ∈ TM ′′AQ′′-mod.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TM ′AQ′ ⊗OX

TM ′′AQ′′ mod-

ule.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TMAQ′⊗Q′′/I module.

=⇒ This TMAQ′⊗Q′′/I module corresponds to a representation of Q ′⊗Q ′′

with relations which we call the tensor product E ′ ⊗ E ′′.

13



Tensor products of quiver representations

Let E ′ ∈ Rep(M ′Q ′) and E ′′ ∈ Rep(M ′′Q ′′).

=⇒ We have ME′ ∈ TM ′AQ′ -mod and ME′′ ∈ TM ′′AQ′′-mod.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TM ′AQ′ ⊗OX

TM ′′AQ′′ mod-

ule.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TMAQ′⊗Q′′/I module.

=⇒ This TMAQ′⊗Q′′/I module corresponds to a representation of Q ′⊗Q ′′

with relations which we call the tensor product E ′ ⊗ E ′′.

13



Tensor products of quiver representations

Let E ′ ∈ Rep(M ′Q ′) and E ′′ ∈ Rep(M ′′Q ′′).

=⇒ We have ME′ ∈ TM ′AQ′ -mod and ME′′ ∈ TM ′′AQ′′-mod.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TM ′AQ′ ⊗OX

TM ′′AQ′′ mod-

ule.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TMAQ′⊗Q′′/I module.

=⇒ This TMAQ′⊗Q′′/I module corresponds to a representation of Q ′⊗Q ′′

with relations which we call the tensor product E ′ ⊗ E ′′.

13



Tensor products of quiver representations

Let E ′ ∈ Rep(M ′Q ′) and E ′′ ∈ Rep(M ′′Q ′′).

=⇒ We have ME′ ∈ TM ′AQ′ -mod and ME′′ ∈ TM ′′AQ′′-mod.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TM ′AQ′ ⊗OX

TM ′′AQ′′ mod-

ule.

=⇒ The tensor product ME′ ⊗OX
ME′′ is a TMAQ′⊗Q′′/I module.

=⇒ This TMAQ′⊗Q′′/I module corresponds to a representation of Q ′⊗Q ′′

with relations which we call the tensor product E ′ ⊗ E ′′.

13



The untwisted case

Suppose the twisting is trivial.

The tensor product E ′ ⊗ E ′′, for E ′ =

((E ′
i )i∈V ′ , (φα)α∈E ′), E ′′ = ((E ′′

j )j∈V ′′ , (ψβ)β∈E ′′) is given by

· · · · · · · · ·

· · · E ′
hα ⊗OX

E ′′
tβ · · ·

... E ′
tα ⊗OX

E ′′
tβ E ′

hα ⊗OX
E ′′
hβ

...

· · · E ′
tα ⊗OX

E ′′
hβ · · ·

· · · · · · · · ·

Id⊗ψβφα⊗Id

Id⊗ψβ φα⊗Id

Remark
When X = pt we recover the notion of tensor product studied by Her-

schend [Her08] and Das et al. [DDR24].
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Moduli of quiver representations

and the quiver vortex equations



Stability conditions of representations

From now on we assume X = Compact Riemann surface/Point and we

consider quiver representations in the category of Holomorphic vector bun-

dles over X/Finite dimensional C-vector spaces.

• Let E = ((Ei )i∈V , (φα)α∈E ) be a representation of Q. For θ =

(θi )i∈V ∈ R|V | we define the θ-slope of E to be

µθ(E) =
∑

i∈V deg(Ei ) + θi rk(Ei )∑
i∈V rk(Ei )

.

• E is said to be θ-(semi)stable if for all non-trivial subrepresentation F
we have

µθ(F)(≤) < µθ(E).

• We say that E is θ-polystable if it is a direct sum of θ-stable repre-

sentations of the same θ-slope.
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The linear case

• Fix a dimension vector d = (di )i∈V ∈ N|V |.

• d-dimensional representations of Q are parameterised by

Rep(Q, d) =
⊕
α∈E

Hom(Cdtα ,Cdhα).

• The reductive group GL(d) =
∏

i∈V GL(di ) acts by conjugation:

g · (φα) = (ghαφαg
−1
tα )α∈E .

• For θ ∈ Z|V | such that θ · d = 0, there exist GIT quotients

Repθ−s(Q, d)/GL(d)
open
↪−! Repθ−ss(Q, d) �θ GL(d)

:= :=

Mθ−s(Q, d) Mθ−ss(Q, d)
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Symplectic point of view

• Let U(d) =
∏

i∈V U(di ) be the unitary group w.r.t the hermitian

metric

H((φα)α∈E , (ψα)α∈E ) =
∑
α∈E

Tr(φαψ
∗
α).

• Rep(Q, d) is a Kähler manifold with symplectic form ω = −2ImH.

• The U(d)-action on Rep(Q, d) is Hamiltonian with moment map

µ : Rep(Q, d) −!
√
−1u(d)

φ 7−! (
∑

hα=i φαφ
∗
α −

∑
tα=i φ

∗
αφα)i∈V .

• By results of King [Kin94] and Hoskins [Hos14], there is a homeomor-

phism

Mθ−ss(Q, d) ≃ µ−1(θ)/U(d).
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Hitchin-Kobayashi correspondence for quiver bundles

Theorem ([ACGP03])

A quiver bundle E = ((Ei )i∈V , (φα)α∈E ) is θ-polystable if there exist an

hermitian metric Hi on each Ei such that

√
−1ΛFi + (

∑
hα=i

φαφ
∗
α −

∑
tα=i

φ∗
αφα) = θi IdEi , ∀i ∈ V .

• Fi :=Curvature of the Chern connection associated to Hi .

• Λ : Ω(i,j)(X ) ! Ω(i−1,j−1)(X ) contraction operator w.r.t. a fixed

Kähler form on X .
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Applications



Polystability of tensor products of quiver bundles

Theorem

Let E ′, E ′′ be θ′ and θ′′-polystable quiver bundles respectively. Then,

E ′ ⊗ E ′′ is θ-polystable for θ = (θ′i + θ′′j )(i,j)∈V ′×V ′′ .

Corolllary

Tensor products of polystable quiver representations is polystable.
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Segre embedding for quiver representations

• Does every polystable representation of Q ′⊗Q ′′ come from the tensor

product of polystable representations of Q ′ and Q ′′?

• What sort of analytic/algebraic structure does this set of “decompos-

able tensors” have?

• For vector spaces we know the answer: the Segre embedding.
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Segre embedding for quiver representations (II)

• Choose stability parameters θ′, θ′′ and θ such that the corresponding

symplectic reductions are complex Kähler manifolds.

• Our previous result shows that there is a well-defined equivariant map:

µ−1(θ′)× µ−1(θ′′) −! µ−1(θ)

(φ,ψ) 7−! φ⊗ ψ

• So we have a map

F : Mθ′−s(Q ′, d ′)×Mθ′′−s(Q ′′, d ′′) −! Mθ−s(Q, d)
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Segre embedding for quiver representations (III)

Theorem

The map F is an embedding with image a submanifold of real dimension

−2(⟨d ′, d ′⟩Q′ + ⟨d ′′, d ′′⟩Q′′).

Recall that

⟨d , d ′⟩Q =
∑
i∈V

did
′
i −

∑
α∈E

dtαdhα

is the Euler form of the quiver Q.

Remark
Under suitable hypothesis (e.g genericity of parameter and Q ′,Q ′′ being

quivers without cycles) the map F is algebraic and, in fact, a closed im-

mersion.
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Segre embedding for quiver representations (III)
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Recovering classical Segre embedding from the quiver one

• C
... C

z1

zn

θ′=(−1,1)
=⇒ Mθ′−s(Qn, d

′) ≃ Pn−1
C .

• C
... C

w1

wm

θ′=(−1,1)
=⇒ Mθ′−s(Qm, d

′) ≃ Pm−1
C .

•
C

. . . . .
.

C C

. .
. . . .

C

y1

ym

x1

xn

w1

wm

z1

zn

θ=(−2,0,0,2)
=⇒ Mθ−s(Qn ⊗Qm, d) is the smooth projective subvariety of

P2nm−1
C ≃ Proj(C[sij = “xiyj”, tkl = “wkzl”] i,l=1,...,n

j,k=1,...,m
) cutted by the

equations {
si1j1si2j2 − si1j2si2j1 = 0,

tk1l1tk2l2 − tk1l2tk2l1 = 0.

23



Recovering classical Segre embedding from the quiver one

• C
... C

z1

zn

θ′=(−1,1)
=⇒ Mθ′−s(Qn, d

′) ≃ Pn−1
C .

• C
... C

w1

wm

θ′=(−1,1)
=⇒ Mθ′−s(Qm, d

′) ≃ Pm−1
C .

•
C

. . . . .
.

C C

. .
. . . .

C

y1

ym

x1

xn

w1

wm

z1

zn

θ=(−2,0,0,2)
=⇒ Mθ−s(Qn ⊗Qm, d) is the smooth projective subvariety of

P2nm−1
C ≃ Proj(C[sij = “xiyj”, tkl = “wkzl”] i,l=1,...,n

j,k=1,...,m
) cutted by the

equations {
si1j1si2j2 − si1j2si2j1 = 0,

tk1l1tk2l2 − tk1l2tk2l1 = 0.

23



Recovering classical Segre embedding from the quiver one

• C
... C

z1

zn

θ′=(−1,1)
=⇒ Mθ′−s(Qn, d

′) ≃ Pn−1
C .

• C
... C

w1

wm

θ′=(−1,1)
=⇒ Mθ′−s(Qm, d

′) ≃ Pm−1
C .

•
C

. . . . .
.

C C

. .
. . . .

C

y1

ym

x1

xn

w1

wm

z1

zn

θ=(−2,0,0,2)
=⇒ Mθ−s(Qn ⊗Qm, d) is the smooth projective subvariety of

P2nm−1
C ≃ Proj(C[sij = “xiyj”, tkl = “wkzl”] i,l=1,...,n

j,k=1,...,m
) cutted by the

equations {
si1j1si2j2 − si1j2si2j1 = 0,

tk1l1tk2l2 − tk1l2tk2l1 = 0. 23



Recovering classical Segre embedding from the quiver one (II)

By our previous results:

• The map Mθ′−s(Qn, d
′) × Mθ′−s(Qm, d

′) ! Mθ−s(Qn ⊗ Qm, d)

induced by tensorization of representations:

C
... C

z1

zn

⊗ C
... C

w1

wm

=

C

. . . . .
.

C C

. .
. . . .

C

w1

wm

z1

zn

w1

wm

z1

zn

,

is a closed immersion.

• Tensorization gives rise to representations with relations. These are

encoded by the equations

sij − tji = 0, i = 1, . . . , n, j = 1, . . . ,m.

The subvariety of Mθ−s(Qn ⊗ Qm, d) cutted by these is that which

the classical Segre embedding describes.
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Tensors and character varieties

• βα

The tensor quiver Q := QJ ⊗ QJ

• Let R = {αβ − βα} and

M(Q, d ,R) = Rep(Q, d ,R) � GL(d)
closed
↪−! Rep(Q, d) � GL(d).

• For M(QJ , n) = Rep(QJ , n) � GL(n), there is a map

M(QJ , n)×M(QJ ,m) −! M(Q, d ,R)

of affine schemes induced by tensorization of representations:

CnA ⊗ Cm B = Cn ⊗ Cm Idn⊗BA⊗Idm .
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Tensors and character varieties (II)

• The GL(n) character variety of Zr is the GIT quotient:

Mr ,n := Hom(Zr ,GL(n)) � GL(n)

= {(A1, . . . ,Ar ) ∈ GL(d)r |[Ak ,Aj ] = 0} � GL(d).

• M1,n

Distinguished
open
↪−! M(QJ , n) and M2,mn

Distinguished
open
↪−! M(Q,mn,R)

• So the tensorization map restricts to a morphism

M1,n ×M1,m −! M2,mn

of affine schemes.

• M1,n×M1,m is irreducible so the set-theoretic image of this morphism

is irreducible.
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Tensors and character varieties (III)

• The scheme theoretic image is the affine closed subscheme of the

character variety M2,mn determined by the kernel of the ring map

C[M2,mn] ! C[M1,n]⊗C C[M1,m]

associated to the morphism above.

• As a topological space, the scheme-theoretic image is the closure of

the set-theoretic one.

• A similar strategy can be used to obtain distinguished closed sub-

schemes of character varieties from morphisms

M1,n1 × · · · ×M1,nk ! Mk,n1...nk .
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See more in: arXiv:2503.11606 !

Questions?
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