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Introduction

Gerbes where originally introduced by Jean Giraud as a tool for studying non
commutative cohomology in Algebraic Geometry. Recently, this objects have de-
veloped an important role in Differential Geometry leading to applications on
mathematical physics. Basically, a gerbe can be realized as a class in the Čech
cohomology group, Ȟ3(M,Z), so the main goal of this work is to give a meaning
to this identification and to give examples of gerbes over spheres.

Chapter 1 is commited to understand the other creatures in the hierarchy to which
gerbes belong. That is, understanding what are the geometric objects represented
by the Čech cohomology groups in degrees one and two. Of course, we will start
by reviewing the main aspects of Čech cohomology and then we will show that
the objects represented by the first two cohomology groups are C∗-valued smooth
functions and line bundles respectively.

In Chapter 2, we dive deep into the geometry of line bundles. We will find out
that it is possible to differentiate the analogous of vector fields (sections) in these
objects by defining connections and that there is a notion of curvature that we
can associate to line bundles. This will make our way to do differential geometry
with gerbes as well.

The last chapter of this work is focused on giving the so promised definition
of gerbe, giving examples of this object over spheres and in making differential
geometry work on gerbes. To do this, we will use and see the importance of all the
tools developed in the previous chapters because locally, as we will see, a gerbe is
no more than a line bundle as well as a line bundle can be locally understood as
a C∗-valued function.
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Chapter 1

Čech Cohomology and the
Geometric Objects Associated to
Differentiable Manifolds

Given a smooth manifold M and an open covering U = {Uα}α∈I of it, Čech
cohomology associates to M geometric objects which, in different degrees, can
have a completely different appearance. In this chapter we review the main aspects
of Čech cohomology and we study the corresponding geometric objects on M in
degree one and two (complex-valued functions and line bundles, respectively), the
notion of triviality for such objects and the relationship among them.

1.1 Čech Cohomology
Definition 1.1.1. LetM be a manifold and U = {Uα}α∈I an open covering ofM .
We say that U is contractible if the simplex Ui0...ik = Ui0 ∩ . . .∩Uik is contractible
for every k ∈ N and for every (i0, . . . , ik) ∈ Ik+1 such that Ui0...ik 6= ∅.

Remark 1.1.1. Recall that an open cover V is a refinement of U if for all V ∈ V ,
there exists U ∈ U such that V ⊆ U . It is well known, using results from
Riemannian Geometry, that every open covering of a manifold has a contractible
refinement, so that every manifold has a contractible open cover [dC92].

Definition 1.1.2. Let M be a manifold and U = {Ui}i∈I an open covering of M .
A k-chain is a function from the set of all k-simplices into Z, i.e, a function given
by (i0, . . . , ik) 7→ ai0...ik ∈ Z for every (i0, . . . , ik) such that Ui0...ik 6= ∅.

The set of all k-chains, relative to an open cover U , form a group over pointwise
addition of functions. We denote this group by Ck(U ,Z). Now, let δ : Ck(U ,Z)→
Ck+1(U ,Z) be the function defined, for a ∈ Ck(U ,Z), by

(δa)i0,...,ik+1
=

k+1∑
j=0

(−1)jai0...̂ij ...ik+1
,
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and which is clearly a group homomorphism. Furthermore, δ2 = 0 since for
a ∈ Ck(U ,Z):

δ(δa)i0,...,ik+2
=

k+2∑
j=0

(−1)j(δa)i0,...,̂ij ,...,ik+2

=
k+2∑
j=0

(−1)j
( ∑

0≤m<j≤k+2

(−1)mai0...̂im...̂ij ...ik+2
+

∑
0≤j<m≤k+2

(−1)m−1ai0...̂ij ...̂im...ik+2

)

=
k+2∑
j=0

∑
0≤m<j≤k+2

(−1)m+jai0...̂im...̂ij ...ik+2
−

k+2∑
j=0

∑
0≤j<m≤k+2

(−1)m+jai0...̂ij ...̂im...ik+2

= 0.

This implies, for k ≥ 0, that the sequence of groups

C0(U ,Z) C1(U ,Z) . . . Ck(U ,Z) Ck+1(U ,Z) . . .δ δ δ δ δ

satisfies that im(δk−1) ⊆ ker(δk), where δk denotes the map δ : Ck(U ,Z) →
Ck+1(U ,Z). The k-th cohomology group ker(δk)/im(δk−1), relative to an open
cover U , is denoted Hk(U ,Z). Observe that if V is a refinement of U , there is a
canonical homomorphism Hk(V ,Z)→ Hk(U ,Z) and, since the set of open covers
of a manifold is a directed set under refinement, we are allowed to take the direct
limit.

Definition 1.1.3. The k-th Čech cohomology group of a differentiable manifold
M is given by:

Ȟk(M,Z) = lim
−→
U
Hk(U ,Z).

Remark 1.1.2. For any open cover U there is canonical homomorphism Hk(U ,Z)
→ Ȟk(M,Z). Moreover, if U is contractible, this homomorphism is actually an
isomorphism.

We want to point out that instead of using Z to construct the Čech cohomology
groups we could have used any abelian group by considering maps from the set of
all k-simplices into G, where G is an arbitrary abelian group.

There is one last thing to add in this section. Let C∞(C), C∞(C∗) be the sheaves
of C-valued and C∗-valued smoooth functions respectively over a differentiable
manifold M . In [Bry08] is shown that the sequence of sheaves

0 Z C∞(C) C∞(C∗) 1
exp

is exact, meaning that Ȟk+1(M,Z) ∼= Ȟk(M,C∞(C∗)) for k ≥ 0. In what follows
we shall see that in some cases is better to think on elements in Ȟk(M,C∞(C∗))
rather than in Ȟk+1(M,Z), for instance, when defining a gerbe.
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1.2 Čech Cohomology and Complex Functions on
Manifolds

This section is committed to understand what geometric object represents an el-
ement in the first Čech cohomology group Ȟ1(M,Z), for a differentiable manifold
M .

Let M be a differentiable manifold and f : M → C∗ a smooth function. By
remark 1.1.1, there exists a contractibe open cover U = {Uα}α∈I of M . Notice
that f can be built up from local functions gα := f |Uα : Uα → C∗, for α ∈ I, that
satisfy the following condition

gαg
−1
β = 1 (1.2.0.1)

on Uαβ = Uα∩Uβ. We will refer to this condition as a cocycle condition on double
intersections. Defining fα : Uα → C as

fα =
1

2πi
log gα, (1.2.0.2)

for all α ∈ I, we observe that whenever Uαβ 6= ∅, taking the differences aαβ =
fα − fβ one has

exp(2πiaαβ) = exp(log gα − log gβ)

= exp(log gαg
−1
β )

= 1

using the cocycle condition. This implies that aαβ must be Z-valued and since
continuous, it must be constant on Uαβ. Hence, we have defined an element
a ∈ C1(U ,Z). Moreover, note that

(δa)αβγ = aβγ − aαγ + aαβ

= (fβ − fγ)− (fα − fγ) + (fα − fβ)

= 0.

Thus, a ∈ ker(δ1) giving rise to an element [a] ∈ Ȟ1(M,Z).

At this point we see that is possible to build elements in the group Ȟ1(M,Z)
from global complex-valued functions on M , i.e. smooth functions f : M → C∗.
In what is left of this section we will show that in fact, there is a bijective corre-
spondence between these functions and the first Čech cohomology group.

Let FM = {f : M → C∗|f is smooth} and ∼ be the equivalence relation over
FM given by f ∼ g if and only if f = λg for some λ ∈ C∗.

Proposition 1.2.1. F(M) = FM/ ∼ is an abelian group having as group oper-
ation ([f ], [g]) 7→ [fg] and identity element the class of all the constant functions
f : M → {c}, for c ∈ C∗.

7



Remark 1.2.1. The map a ∈ C1(U ,Z) defined above only depends on the class
[f ] ∈ F(M). Indeed, if f 1, f 2 are global functions such that f 1 ∼ f 2 then one has
that f 2 = λf 1 for λ ∈ C∗. In consequence

f 2
α − f 2

β =
1

2πi
log g2

α −
1

2πi
log g2

β

=
1

2πi
log λg1

α −
1

2πi
log λg1

β

=
1

2πi
(log λ+ log g1

α)− 1

2πi
(log λ+ log g1

β)

=
1

2πi
log g1

α −
1

2πi
log g1

β

= f 1
α − f 1

β = aαβ ∈ Z.

Theorem 1.2.1. Let M be a smooth manifold. Then, F(M) ∼= Ȟ1(M,Z).

Proof. Let κ : F(M)→ Ȟ1(M,Z) be the group homomorphism defined as [f ] 7→
[a] where aαβ = fα− fβ and fα is as in equation (1.2.0.2). First, we will prove the
surjectivity of the map κ. Choose an open cover U = {Ui}i∈I of M that is both
contractible and locally finite and a partition of unity

∑
i∈I hi = 1 relative to this

cover where supp(hi) ⊆ Ui for all i ∈ I. Let a ∈ C1(U ,Z) such that a ∈ ker(δ1).
Define fα : Uα → C as

fα =
∑
γ∈I

aαγhγ

and observe that

fα − fβ =
∑
γ∈I

aαγhγ −
∑
γ∈I

aβγhγ =
∑
γ∈I

(aαγ − aβγ)hγ =
∑
γ∈I

aαβhγ = aαβ ∈ Z.

Now, put gα = exp(2πifα) and observe that the equality (1.2.0.1) holds. It follows
trivially that there exists a global function f : M → C∗ such that f |Uα = gα for
all α ∈ I.

Finally, we will show that κ is injective. Let f 1, f 2 be two global functions such
that κ([f 1]) = κ([f 2]) and U the open cover given above. Note that we can choose
logarithms such that fα − fβ = 0 for fα = f 1

α − f 2
α and

fkα =
1

2πi
log gkα

where k = 1, 2. This relation yields

g1
α

g2
α

=
g1
β

g2
β

for all α, β ∈ I which implies that f1 ∼ f2 as desired.
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In summary, Ȟ1(M,Z) represents the set of all global functions up to the equiva-
lence relation ∼. Given this construction one may think the trivial object in this
category as any constant global function, i.e. a function of the form f : M → {c}
for c ∈ C∗, and the non trivial object as any non constant global function. Later
on we shall see the importance of this distinction.

Example 1.2.1. (Global Functions over S1, S2 and S3) It is well known, using
results from Algebraic Topology, that Ȟk(Sn,Z) is trivial for all k 6= n. As a
matter of fact, Ȟn(Sn,Z) ∼= Z. Hence, the only possible existing global functions
over S2 and S3 are the trivial ones,i.e. constant functions.

The fact of Ȟ1(S1,Z) being isomorphic to Z implies that there will be global
function over S1 for each integer. What is more, since Z is cyclic, there is an
unique global function over S1 that generates all the others.

1.3 Čech Cohomology and Line Bundles on Man-
ifolds

We move one step forward into the hierarchy. In this section we study the rela-
tionship between line bundles and Ȟ2(M,Z) for a given differentiable manifold
M . But, unlike section 1.2, we dive deep into the structure of these objects and
its geometry.

1.3.1 Line Bundles

In first place, we will develop the classic theory of vector bundles, focused on the
objects we are interested in, which are line bundles over a differentiable manifold
M . This is way easier than tackling the definition of a line bundle from the
cohomology perspective, i.e as an equivalence class in Ȟ2(M,Z).

Definition 1.3.1.1. LetM be a differentiable manifold. A line bundle L overM
is a vector bundle whose fibers are isomorphic to C, i.e. a differentiable manifold
together with a C∞ map π : L→M such that:

• For all p ∈M , Lp = π−1(p) has structure of one dimensional complex vector
space.

• (Local Trivialization) For all p ∈ M , there exists an open set U , containing
p, and a diffeomorphism ϕ such that the following diagram commutes:

π−1(U) U × C

U

ϕ

π
prU
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Moreover, the map ϕ|Lp : Lp → {p} × C is a linear isomorphism.

Definition 1.3.1.2. Two line bundles, L, J over a manifold M are said to be
isomorphic if there is a diffeomorphism ϕ : L→ J such that the following diagram
commutes:

L J

M

ϕ

πL πJ

Moreover, ϕ|Lp : Lp → Jp is a linear isomorphism between one dimensional vector
spaces over C. We write L ∼= J when L and J are isomorphic.

Remark 1.3.1.1. A line bundle L over a differentiable manifold M is said to
be trivial if L ∼= M × C. That is why we talk about "local trivializations" on
definition 1.3.1.1.

Definition 1.3.1.3. Let M be a differentiable manifold and L a line bundle over
M . A section of L is a C∞ function σ : M → L such that π ◦ σ = idM . The set
of all sections of a line bundle is clearly a vector space over C and is denoted by
Γ(M,L).

Proposition 1.3.1.1. A line bundle L over a differentiable manifold M is trivial
if and only if it admits a nowhere vanishing section.

Proof. Let L be a line bundle over a differentiable manifold M .
"⇒" Suppose that L is trivial. By definition 1.3.1.2, there exists a diffeomorphism
ϕ : L→M × C such that the following diagram commutes:

L M × C

M

ϕ

πL prM

Let σ′ : M → M × C be the section defined by p 7→ (p, 1). Note that under the
conmmutativity of the diagram, the function σ := ϕ−1 ◦ σ′ : M → L satisfies

πL ◦ σ = prM ◦ ϕ ◦ ϕ−1 ◦ σ′ = prM ◦ σ′ = idM ;

hence, it is a section. Moreover, σ(p) 6= 0Lp for all p ∈M since σ(p) = ϕ−1◦σ′(p) =
ϕ−1(1, p) 6= 0Lp due to the fact that ϕ−1 is a linear isomorphism fiberwise, stated
in definition 1.3.1.2.

"⇐" Now, suppose that L has a nowhere vanishing section σ, i.e. for all p ∈ M ,
σ(p) 6= 0Lp . Let us define ϕ : M ×C→ L as (p, λ) 7→ λσ(p) which is clearly a C∞
function.
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First, we will show that ϕ is linear fibwerwise. Fixing p ∈ M , α ∈ C and
(p, λ1), (p, λ2) ∈ (M × C)p we notice that

ϕ(α(p, λ1) + (p, λ2)) = ϕ((p, αλ1) + (p, λ2))

= ϕ(p, αλ1 + λ2) = (αλ1 + λ2)σ(p)

= αλ1σ(p) + λ2σ(p) = αϕ(p, λ1) + ϕ(p, λ2)

showing that ϕ is linear fiberwise.

Secondly, we will check that ϕ is bijective. Let (p, λ) ∈ ker(ϕ|(M×C)p), then,
ϕ(p, λ) = λσ(p) = 0Lp . But, σ(p) 6= 0Lp since σ is a nowhere vanishing concluding
that λ = 0 and that in consequence, ϕ|(M×C)p is injective. On the other hand,
let q ∈ L, then, there exists p ∈ M such that q ∈ Lp. A basis for Lp is clearly
given by the set {σ(p)} which implies that q = λσ(p) for some λ ∈ C. Hence,
ϕ(p, λ) = q concluding that ϕ is surjective.

Until now we have proven that ϕ is a vector space isomoprhism fiberwise. Thus,
ϕ is a bijection between L and M × C with inverse ϕ−1 given by λσ(p) 7→
(π(λσ(p)), λ) = (p, λ) that is C∞. Therefore, ϕ is a diffeomorphism between
L and M × C concluding that L is trivial.

Remark 1.3.1.2. By proposition 1.3.1.1, the set of local trivializations {ϕα :
Uα × C → π−1(Uα)}α∈I of a line bundle induce a set {σα : Uα → L}α∈I of
nowhere vanishing sections and viceversa. So, one may think a line bundle as a
set {(Uα, σα)}α∈I , where {Uα}α∈I is an open cover of M and σα : Uα → L is a
nowhere vanishing section for all α ∈ I, that "glues" together in a nice way on the
non empty double intersections Uαβ = Uα ∩ Uβ. From now on, our work is going
to be concentrated on formalizing these ideas.

Given a line bundle L over a differentiable manifold M and two local trivial-
izations, ϕα : Uα × C → π−1(Uα), ϕβ : Uβ × C → π−1(Uβ) we will have the
diffeomorphism ϕβ ◦ ϕ−1

α : π−1(Uαβ) → π−1(Uαβ) whenever Uαβ 6= ∅. Observe
that, by definition 1.3.1.2, ϕβ ◦ ϕ−1

α is linear isomorphism fiberwise, hence the
following diagram must commute for all p ∈ Uαβ:

Lp Lp

C C

ϕβ◦ϕ−1
α

gβα(p)

where gβα(p) is the basis change matrix (transformation matrix) with respect to
the basis σα(p) and σβ(p) of Lp. Moreover, gβα(p) ∈ GL(1,C) = C∗ and

σα(p) = gβα(p)σβ(p) (1.3.1.1)

which implies that gβα depends smoothly on p.
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Definition 1.3.1.4. The smooth maps gαβ : Uαβ → C∗ are called transition
functions of L and for convenience, in some cases we will denote gαβ(p) as gαβ.

Proposition 1.3.1.2. The transition functions of a line bundle L satisfy the
following properties:

1. gαα = 1.

2. gαβ = g−1
βα .

3. (Cocycle Condition) gαβgβγgγα = 1 over Uαβγ or equivalently gαβgβγ = gαγ.

Proof. 1 and 2 are trivial. Now, consider the map ϕα ◦ϕ−1
β ◦ϕβ ◦ϕ−1

γ ◦ϕγ ◦ϕ−1
α :

π−1(Uαβγ) → π−1(Uαβγ) which is clearly defined by λσα(p) 7→ λgαβgβγgγασα(p).
But, also we have that ϕα ◦ ϕ−1

β ◦ ϕβ ◦ ϕ−1
γ ◦ ϕγ ◦ ϕ−1

α = id|π−1(Uαβγ) which implies
that gαβgβγgγα = 1 as desired.

In summary, we can understand a line bundle in multiple ways. The one as in
definition 1.3.1.1. Also, as a set of nowhere vanishing sections on an open cover
of M which glue together through the so called transition functions defined in
definition 1.3.1.4. Furthermore, in the next proposition we will see that it is
enough to have an open cover of M together with a set of transition functions to
define a line bundle.

Proposition 1.3.1.3. Let M be a smooth manifold, {Uα}α∈I an open cover of
M and {gαβ : Uαβ → C∗} a set of transition functions such that the equalities
in proposition 1.3.1.2 hold. Then, L =

⊔
α∈I Uα × C/ ∼ is a line bundle over M

where ∼ is the equivalence relation defined by (p, λ1) ∼ (q, λ2) if and only if p = q
and λ2 = gβαλ1.

This is not a surprise at all, recall that a line bundle is locally trivial so we only care
about gluing properly on double intersections these trivial pieces. This is, in fact,
the idea we are going to capture when relating line bundles to Čech cohomology;
that a line bundle is uniquely determined by its transition functions.

1.3.2 The Picard Group and the Second Čech Cohomology
Group

In definition 1.3.1.2 we discussed under what circumstances two line bundles over a
differentiable manifoldM where isomorphic. Clearly, the fact of being isomorphic
defines a equivalence relation on LM , the set of all line bundles over a differentiable
manifold M .

Proposition 1.3.2.1. Let Pic(M) = LM/ ∼=. Then, Pic(M) has abelian group
structure by taking tensor products of line bundles. Pic(M) is called the picard
group of M.

12



Proof. We define⊗ : Pic(M)×Pic(M)→ Pic(M) as ([L1], [L2])→ [L1⊗L2]. Here,
L1 ⊗ L2 =

⊔
p∈M L1

p ⊗C L
2
p which is well defined under the equivalence relation

∼=. The identity element of Pic(M) corresponds to the trivial bundle equivalence
class, [M × C], since for all L ∈ LM ,

(M × C)⊗ L =
⊔
p∈M

(M × C)p ⊗C Lp =
⊔
p∈M

C⊗C Lp =
⊔
p∈M

Lp = L.

The binary operation, ⊗, defined above is clearly associative since the tensor
product of complex vector spaces is associative. In order to check the existence
of inverse elements on Pic(M) we recall the dual bundle of L, which is given by
L∗ =

⊔
p∈M L∗p. Note that

L⊗ L∗ =
⊔
p∈M

Lp ⊗C L
∗
p
∼=
⊔
p∈M

End(Lp) =
⊔
p∈M

C = M × C.

Hence, [L]−1 = [L∗]. It only remains to verify the commutativity of Pic(M) but
this follows immediately from the fact that the tensor product of complex vector
spaces is commutative.

Our labor, in what remains of this section, will be to construct an isomorphism
between the Picard group and the second Čech Cohomology group.
Let M be a smooth manifold and L a line bundle over M . By remarks 1.1.1 and
1.3.1.2 we may choose a contractible cover of M together with a set of nowhere
vanishing sections, i.e, a set {(Uα, σα)}α∈I that defines the line bundle L. Now,
define for all α, β ∈ I such that Uαβ 6= ∅, fαβ : Uαβ → C as

fαβ =
1

2πi
log gαβ (1.3.2.1)

where gαβ : Uαβ → C∗ are the corresponding transition functions associated to L.
Whenever Uαβγ 6= ∅, observe that for aαβγ = fαβ + fβγ − fαγ one has

exp(2πi aαβγ) = exp(2πi(fαβ + fβγ − fαγ))
= exp(log gαβ + log gβγ − log gαγ)

= exp(log(gαβgβγg
−1
αγ )) = exp(log(gαβgβγgγα))

= 1

using the cocycle condition stated in proposition 1.3.1.2. This implies that aαβγ
must be Z−valued, but since continuous, it must be constant on Uαβγ. Therefore,
a is an element in C2(U ,Z). Also, note that

(δa)αβγδ = aβγδ − aαγδ + aαβδ − aαβγ
= (fβγ + fγδ − fβδ)− (fαγ + fγδ − fαδ) + (fαβ + fβδ − fαδ)− (fαβ + fβγ − fαγ)
= 0.
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Hence, a ∈ ker(δ2) defining an element [a] ∈ Ȟ2(M,Z).

One may think that the map a ∈ C2(U ,Z) depends on the choice of {(Uα, σα)}α∈I .
However, it only depends on [L] ∈ Pic(M) by the following proposition.

Proposition 1.3.2.2. Let g1
αβ, g

2
αβ be the transition functions for the line bundles

L1, L2 relative to the sets {(Uα, σ1
α)}α∈I , {(Uα, σ2

α)}α∈I . Then, L1 ∼= L2 if and only
if there exist smooth functions λα : Uα → C∗ such that λαg1

αβλ
−1
β = g2

αβ on Uαβ.

Proof. Let L1, L2 be line bundles over a differentiable manifold M and g1
αβ, g

2
αβ

be the corresponding transition functions relative to the sets {(Uα, σ1
α)}α∈I and

{(Uα, σ2
α)}α∈I .

"⇒" Suppose that L1 ∼= L2. Then, by definition 1.3.1.2, there is a diffeomorphism,
ϕ : L1 → L2 which is linear fiberwise. Fix α, β ∈ I such that Uαβ 6= ∅ and let
p ∈ Uαβ. Recall that σ1

β(p) is a basis for the one dimensional vector space L1
p and

that ϕ is a linear isomorphism fiberwise. Hence, ϕ sends basis into basis and,
using equation (1.3.1.1),

ϕ(σ1
β(p)) = λβ(p)σ2

β(p) = λβ(p)g2
αβσ

2
α(p)

where λβ(p) ∈ C∗. On the other hand, again by equation (1.3.1.1),

ϕ(σ1
β(p)) = ϕ(g1

αβσ
1
α(p)) = g1

αβϕ(σ1
α(p)) = g1

αβλα(p)σ2
α(p)

and here λα(p) ∈ C∗ too. Combining both equalities we get that λα(p)g1
αβ =

λβ(p)g2
αβ and therefore,

λα(p)g1
αβλ

−1
β (p) = g2

αβ

on Uαβ. Observe that we may define λα all over Uα since the nowhere vanishing
section, σ1

α, gives us a basis, for a one dimensional complex vector space, for each
point p ∈ Uα. Moreover, note that λα : Uα → C∗ is no more than the restriction of
ϕ to π−1(Uα) in the sense that for x ∈ π−1(Uα), we know that there exist p ∈ Uα
and λ ∈ C such that x = λσ1

α(p) and therefore ϕ(x) = ϕ(λσ1
α(p)) = λϕ(σ1

α(p)) =
λα(p)λσ2

α(p). From this statement follows the differentiability of λα.

"⇐" Now, we assume that there exist smooth functions λα : Uα → C∗ such
that λαg1

αβλ
−1
β = g2

αβ on Uαβ. Define the smooth function ϕ : L1 → L2 as
λσ1

α(p) 7→ λλα(p)σ2
α(p) which is clearly a linear isomorphism fiberwise. Note

that we may have an issue on all the points, x = λσ1
α(p) = λ′σ1

β(p) ∈ π−1(Uαβ),
since we do not know if ϕ(λσ1

α(p)) = ϕ(λ′σ1
β(p)). In subsection 1.3.1 we discussed

that the two representations of x in the basis σ1
α(p) and σ1

β(p) are related via the
transition functions by

x = λ′σ1
β(p) = λ′g1

αβσ
1
α(p)

where clearly λ = λ′g1
αβ. Thus, we need to show that ϕ(λ′σ1

β(p)) = ϕ(λ′g1
αβσ

1
α(p)).
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Using the hypothesis and equation (1.3.1.1) we get

ϕ(λ′σ1
β(p)) = λ′λβ(p)σ2

β(p)

= λ′λβ(p)g2
αβσ

2
α(p)

= λ′λβ(p)λα(p)g1
αβλ

−1
β (p)σ2

α(p)

= λ′λα(p)g1
αβσ

2
α(p)

= ϕ(λ′g1
αβσ

1
α(p)) = ϕ(λσ1

α(p))

as desired. In summary, ϕ : L1 → L2 is a well defined smooth function, a linear
isomorphism fiberwise and a funcion with smooth inverse given by λσ2

α(p) 7→
λ/λα(p)σ1

α(p). This means that L1 ∼= L2 as we wanted to prove.

It is now easy to check that a does not depend on the choice of the nowhere
vanishing sections nor the line bundle itself, just on the equivalence class [L] ∈
Pic(M) . For instance, if we choose two isomorphic line bundles L1, L2 one has
that

f 2
αβ + f 2

βγ − f 2
αγ =

1

2πi
(log g2

αβ + log g2
βγ − log g2

αγ)

=
1

2πi
(log λαg

1
αβλ

−1
β + log λβg

1
βγλ

−1
γ − log λαg

1
αγλ

−1
γ )

=
1

2πi
(log g1

αβ + log g1
βγ − log g1

αγ)

= f 1
αβ + f 1

βγ − f 1
αγ = aαβγ.

We conclude presenting the so mentioned main result of this section, were we
combine all our work until now.

Theorem 1.3.2.1. Let M be a smooth manifold. Then, Pic(M) ∼= Ȟ2(M,Z).

Proof. Let κ : Pic(M) → Ȟ2(M,Z) be the group homomorphism defined as
[L] 7→ [a] where aαβγ = fαβ + fβγ − fαγ and fαγ is as in equation (1.3.2.1).

First, we will prove the surjectivity of the map κ. Choose an open cover U =
{Uα}α∈I of M to be both contractible and locally finite and a partition of unity,∑

p∈I hp = 1, relative to this cover where supp(hp) ⊆ Up. Let a ∈ C2(U ,Z) such
that a ∈ ker(δ2). Define fαβ : Uαβ → C as

fαβ =
∑
p∈I

aαβphp

and observe that

fαβ−fαγ +fβγ =
∑
p∈I

aαβphp−
∑
p∈I

aαγphp+
∑
p∈I

aβγphp =
∑
p∈I

(aαβp−aαγp+aβγp)hp.
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But, since a ∈ ker(δ2) , aβγp − aαγp + aαβp − aαβγ = 0. Thus,

fαβ − fαγ + fβγ =
∑
p∈I

(aαβp − aαγp + aβγp)hp =
∑
p∈I

aαβγhp = aαβγ ∈ Z.

Now, put gαβ = exp(2πifαβ) and note that the equalities in proposition 1.3.1.2
hold. Therefore, by proposition 1.3.1.3, there exists a line bundle L having the
gαβ as transition functions. One then has that κ([L]) = [a] proving the surjectivity.

Finally, we will show that κ is injective. Let L1, L2 be any two line bundles
over M such that κ([L1]) = κ([L2]). Again choose a contractible locally finite
open cover U = {Uα}α∈I of M . Let g1

αβ, g
2
αβ be the transition functions for the

line bundles L1, L2 respectively relative to the sets of nowhere vanishing sections
{(Uα, σ1

α)}α∈I , {(Uα, σ2
α)}α∈I . Now, note that we may choose logarithms so that

fαβ + fβγ − fαγ = 0 for fαβ = f 1
αβ − f 2

αβ and

fkαβ =
1

2πi
log gkαβ

where k = 1, 2. Choose again a partition of unity,
∑

p∈I hp = 1, relative to the
cover U and define ψα : Uα → C as

ψα =
∑
p∈I

fpαhp.

Note that
ψβ − ψα =

∑
p∈I

(fpβ − fpα)hp =
∑
p∈I

fαβhp = fαβ.

So if we set λα = exp(2πiψα) we have that

λαg
1
αβλ

−1
β = exp(2πiψα)g1

αβ exp(−2πiψβ)

= g1
αβ exp(2πifβα)

= g1
αβ exp(log(g1

βα)− log(g2
βα))

= g1
αβ exp(log(g1

βαg
2
αβ))

= g2
αβ.

Thus, by proposition 1.3.2.2, L1 ∼= L2 and therefore, [L1] = [L2] showing the
injectivity of κ.

There are important considerations to be made at this moment. In this category,
a line bundle L, over a differentiable manifold M , is trivial if [L] = [M ×C]. This
means, in the spirit of proposition 1.3.1.1, admitting a nowhere vanishing section
σ : M →M × C. But looking carefully at this section we realize that there must
exist a global function, f : M → C∗, such that σ(p) = (p, f(p)) for all p ∈M . So
a trivial object in the category of line bundles, Ȟ2(M,Z), can be represented as
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an object in the preceding category, i.e. Ȟ1(M,Z).

Conversely, a line bundle is not trivial if this does not admit a nowhere van-
ishing section. In other words, if there is not a global function that trivializes
the line bundle. Poincaré’s lemma tells us that any closed element in C2(U ,Z),
i.e. a ∈ C2(U ,Z) such that δa = 0, locally is exact, namely a = δb for some
b ∈ C1(U ,Z). Translating this condition into the language of line bundles and
global functions we get, on each non empty double intersection Uαβ, that

gαβ = fβf
−1
α

for fα : Uα → C∗ and gαβ : Uαβ → C∗ the transition functions defining a line
bundle. What we just did is to reexpress the local triviality of a line bundle from
a cohomology perpective. Although, if the line bundle is trivial, [g] = [δf ], for
f : M → C∗ and here, we are thinking in the languaje of Ȟk(M,C∞(C∗)).

For instance, if we choose two trivializations for a line bundle described by the
transition functions gαβ : Uαβ → C∗ we have that

gαβ = fβf
−1
α = f ′β(f ′α)−1,

for f ′α, fα : Uα → C∗, on Uαβ. Then, if we compare these trivializations we obtain

f ′α
fα

=
f ′β
fβ
,

meaning that the the local trivializations on Uα and Uβ diverge by a global func-
tion. So it made total sense to describe a line bundle by a global functions on non
empty double intersections. In the next chapter, when defining a gerbe, we shall
see the importance of this point of view.

1.3.3 Examples

Example 1.3.3.1. (TS2) Recall that TS2 =
⊔
p∈S2 TpS2 and that each tan-

gent space can be identified as TpS2 = {v ∈ R3|〈p, v〉 = 0}. One can en-
dow this space with structure of one dimensional complex vector space taking
(α + iβ)v = αv + β(p× v) so it makes sense to think on TS2 as a line bundle.

Now, we will provide local trivializations for TS2 and we do this finding nowhere
vanishing sections and its corresponding transition functions just as in remark
1.3.1.2. An atlas for S2 is given by the upper and lower hemispheres of S2 but
slightly overlapping on the equator in a strip. Let us denote this sets by U1 and
U2 respectively.

We can find nowhere vanishing sections or smooth vector fields Xi : Ui → TS2,
for i = 1, 2, as in the next figure
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One obtains the following figure undoing the strip given by U12 and restricting X1

and X2 to it

Here, the upper and lower parts correspond to X1 and X2 respectively. So if we
are asking for the transition functions that solve the equation

Xi = gjiXj,

we are finding out how much we have to rotate Xi to get Xj. We express this
rotation with the maps gij : U12 → C∗ with values in the unit circle. Therefore,
TS2 has structure of line bundle.

Example 1.3.3.2. (The Hopf Bundle) Recall that CP1 is the set of all lines
through the origin in C2. We denote the line through the vector z = (z1, z2) as
[z] = [z1, z2]. Note that [λz1, λz2] = [z1, z2] for any λ ∈ C∗.

Now, let H ⊆ C2 × CP1 be defined as:

H = {(w, [z])|w = λz for some λ ∈ C∗}.

Define the projection π : H → CP1 as (w, [z]) 7→ [z]. Hence, the fibers will be
given by H[z] = π−1([z]) = {(λz, [z])|λ ∈ C∗}. Moreover, we can induce a vector
space structure in the fibers setting

λ1(w, [z]) + λ2(w′, [z]) = (λ1w + λ2w
′, [z]).

To verify that H is indeed a line bundle over CP1 we must find a set of nowhere
vanishing sections and its corresponding transition functions as in remark 1.3.1.2.
An atlas for CP1 is given by the open sets Ui = {[z1, z2]|zi 6= 0} for i = 1, 2 and the
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coordinate charts ψi = Ui → C defined as ψ1([z1, z2]) = z2/z1 and ψ2([z1, z2]) =
z1/z2. Now, consider the sections σi : Ui → H, for i = 1, 2, given by

σ1([z]) = ((1, ψ1([z])), [z])

and
σ2([z]) = ((ψ2([z]), 1), [z]).

which are clearly nowhere vanishing. Equation (1.3.1.1) tells us that σ1 and σ2

are related, on U12, through the transition functions by

σi = gjiσj.

Thus, for [z] = [z1, z2] ∈ U12 ⊂ CP1:

((1,
z2

z1

), [z]) = ((1, ψ1([z])), [z]) = g21((ψ2([z]), 1), [z]) = g21((
z1

z2

, 1), [z]).

Therefore the transition functions, gij : U12 → C∗, are

g21([z]) =
z2

z1

and
g12([z]) =

z1

z2

concluding that H is in fact a line bundle over CP1 called the Hopf Bundle.

Example 1.3.3.3. (Line Bundles over S1, S2 and S3) Following the ideas from
example 1.2.1 we may conclude that the only possible existing line bundles over
S1 and S3 are the trivial ones, S1×C and S3×C respectively, up to isomorphism.

So the fact of Ȟ2(S2,Z) being isomorphic to Z implies that there will be a line
bundle over S2 for each integer. What is more, since Z is cyclic, there is a unique
line bundle over S2 that generates all the others. In view of CP1 ∼= S2, we can
think on the Hopf Bundle as a line bundle over S2, which we denote by LH . The
generator line bundle for Pic(S2) turns out to be LH [Row].
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Chapter 2

The Geometry of Line Bundles

The structure of Rn gives us a way to differentiate vector fields, which are sections
of the tangent bundle over Rn itself, through the directional derivative. We would
like to do the same for line bundles, i.e. differentiating sections of a line bundle,
in directions given by vector fields, to obtain sections of it. But there is an
obstruction since each fiber of the bundle, unlike Rn, is a different vector space.
Actually, there is no canonical way to do that, and a connection is a rule for
differentiating sections of the line bundle despite its configuration. Connections
give rise through a second derivative, to the notion of curvature for line bundles,
and in terms of it we can define toplogical invariants which can be used to classify
line bundles.

2.1 Connections and Curvature
Given a smooth manifold M , we will denote the algebra of all smooth complex
vector fields on M as X(M), the graded algebra of all complex valued smooth dif-
ferential forms onM as Ω(M) and the set of all complex valued smooth functions,
f : M → C, as C∞(M).

Definition 2.1.1. Let L be a line bundle over a smooth manifoldM . A connection
in L is a C-linear map ∇ : X(M) → End Γ(M,L) defined as ξ 7→ ∇ξ such that
for all φ ∈ C∞(M) and σ ∈ Γ(M,L):

• ∇φξ = φ∇ξ.

• (Leibniz Rule) ∇ξφσ = (ξφ)σ + φ∇ξσ

Remark 2.1.1. From the first condition in the above definition we note that
(∇ξσ)(p), for p ∈ M , depends only on σ and the tangent vector ξ(p) allowing us
to define ∇vσ for any tangent vector v and any section σ. On the other hand, the
second condition implies that (∇ξσ)(p) only depends on the germ of σ at p. Thus,
if U is any open set, the connection ∇ induces a connection in L|U = π−1(U) and
therefore ∇ξσ ∈ Γ(U,L|U) is defined for all ξ ∈ X(M) and σ ∈ Γ(M,L).
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Now, observe that if U ⊆ M is an open set and σ ∈ Γ(U,L|U) is a nowhere
vanishing section we may associate to σ a 1-form ωσ ∈ Ω1(U) as follows. If
τ ∈ Γ(U,L|U) is arbitrary, there exists a unique smooth function, τ/σ ∈ C∞(U),
such that τ = (τ/σ)σ. Then, the map X(U)→ C∞(U) given by

ξ 7→ 1

2πi

∇ξσ

σ

is clearly C-linear and a C∞(U)-module homomorphism. But, Ω1(U) ∼= HomC∞(U)

(X(U), C∞(U)) which implies that there exists a unique 1-form ωσ ∈ Ω1(U) such
that

∇ξσ = 2πiωσ(ξ)σ. (2.1.0.1)

Proposition 2.1.1. Let L be a line bundle over a smooth manifold M with
connection ∇, U ⊆ M an open set and σ, τ ∈ Γ∗(U,L|U) which is the set of all
nowhere vanishing smooth sections over U . Then we have that

ωτ = ωσ +
1

2πi

dg

g

where g = τ/σ.

Proof. Let ξ ∈ X(M). By equation (2.1.0.1) we have that

2πiωτ (ξ) =
∇ξτ

τ
=
∇ξ(gσ)

gσ
.

On the other hand, by the Leibniz Rule, ∇ξ(gσ) = (ξg)σ + g∇ξσ which implies
that

2πiωτ (ξ) =
∇ξ(gσ)

gσ
=

(ξg)σ + g∇ξσ

gσ

=
ξg

g
+
∇ξσ

σ
=
dg(ξ)

g
+
∇ξσ

σ

=
dg(ξ)

g
+ 2πiωσ(ξ).

This yields the desired equality since ξ was arbitrary.

The next result, which is a corollary to proposition 2.1.1, consist in applying what
we just prove to the set of nowhere vanishing sections of a line bundle and its
corresponding transition functions.

Corollary 2.1.1.1. Let gαβ be the corresponding transition functions for the line
bundle L relative to the set {(σα, Uα)}α∈I of nowhere vanishing sections. If ∇ is
a connection in L and ωα = ωσα ∈ Ω1(Uα) then one has on Uαβ:

ωβ = ωα +
1

2πi

dgαβ
gαβ

. (2.1.0.2)

Conversely, if a family of 1-forms ωα ∈ Ω1(Uα) satisfy the above relation, then
there is a unique connection, ∇, such that ωα = ωσα .
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Proof. Recall, by equation (1.3.1.1), that whenever Uαβ 6= ∅ one has gαβσα = σβ.
So the first result follows immediately by proposition 2.1.1 setting τ = σβ, σ = σα
and g = gαβ.

On the other hand, if we have a set of 1-forms ωα ∈ Ω1(Uα) satisfying the equation
(2.1.0.2) we define ∇ piecewise as

∇ξσ =

(
ξ

(
σ

σα

)
+

σ

σα
2πiωα(ξ)

)
σα

on Uα for all ξ ∈ X(M) and σ ∈ Γ(M,L). Note that on Uαβ one has(
ξ

(
σ

σβ

)
+

σ

σβ
2πiωβ(ξ)

)
σβ =

(
ξ

(
σ

σβ

)
+

σ

σβ
2πi

(
ωα(ξ) +

1

2πi

dgαβ(ξ)

gαβ

))
gαβσα

=

(
gαβξ

(
σ

σβ

)
+

σ

σα
2πiωα(ξ) +

σ

σα

dgαβ(ξ)

gαβ

)
σα.

In addition, by the Leibniz rule,

ξ

(
σ

σα

)
= ξ

(
gαβ

σ

σβ

)
= gαβξ

(
σ

σβ

)
+

σ

σβ
ξ(gαβ) = gαβξ

(
σ

σβ

)
+

σ

σα

dgαβ(ξ)

gαβ
.

Combining both equalities we obtain

∇ξσ =

(
ξ

(
σ

σα

)
+

σ

σα
2πiωα(ξ)

)
σα =

(
ξ

(
σ

σβ

)
+

σ

σβ
2πiωβ(ξ)

)
σβ

on Uαβ implying that ∇ is well defined.

Now, we will check that ∇ satisfies both conditions stated in definition 2.1.1
showing that it is indeed a connection. Let φ ∈ C∞(M) and σ ∈ Γ(M,L). First,
note that

∇φξσ =

(
φξ

(
σ

σα

)
+

σ

σα
2πiωα(φξ)

)
σα

=

(
φξ

(
σ

σα

)
+

σ

σα
2πiφωα(ξ)

)
σα

= φ

(
ξ

(
σ

σα

)
+

σ

σα
2πiωα(ξ)

)
σα

= φ∇ξσ.

On the other hand,

∇ξ(φσ) =

(
ξ

(
φσ

σα

)
+
φσ

σα
2πiωα(ξ)

)
σα

=

(
φξ

(
σ

σα

)
+

σ

σα
ξ(φ) + φ

σ

σα
2πiωα(ξ)

)
σα

= σξ(φ) +

(
φξ

(
σ

σα

)
+ φ

σ

σα
2πiωi(ξ)

)
σα

= σξ(φ) + φ∇ξσ.
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Finally, it is clear that ωσα = ωα which implies that ∇ is unique.

Remark 2.1.2. The last corollary and equation (2.1.0.1) tell us that we can
understand a connection, locally, as a 1-form that glues together properly on
twofold intersections through the equation (2.1.0.2).

If we fix a connection ∇ over a line bundle and take the exterior derivative on
both sides of equation (2.1.0.2) we get that

dωβ = d

(
ωα +

1

2πi

dgαβ
gαβ

)
= dωα +

1

2πi
d

(
dgαβ
gαβ

)
= dωα +

1

2πi
(d(g−1

αβ ) ∧ dgαβ + g−1
αβ ∧ d

2gαβ)

= dωα +
1

2πi

1

g2
αβ

dgαβ ∧ dgαβ

= dωα

whenever Uαβ 6= ∅. So there is a global 2-form, F , such that F |Uα = dωα.

Definition 2.1.2. Let L be a line bundle with connection ∇. The 2-form F is
called the curvature of ∇.

Curvature allow us to define topological invariants for line bundles but before
doing so we require to discuss some facts about it.

Proposition 2.1.2. The curvature F of a connection ∇ satisfies:

• dF = 0.

• If ∇,∇′ are two connections, then ∇ = ∇′ + η for η a 1-form and F∇ =
F∇′ + dη.

• If Σ is a closed surface then
1

2πi

∫
Σ

F∇

is an integer independent of ∇.

Definition 2.1.3. Let L be a line bundle over a closed surface Σ. The chern class
of L, c(L), is defined to be the integer

1

2πi

∫
Σ

F∇

for any connection ∇ over L.
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Therefore, the chern class is a way of classifying line bundles topologically. So if for
instance, two line bundles are isomorphic, one would expect that its corresponding
chern classes are equal.

Remark 2.1.3. What is the analogous of the chern class for global functions?
Well, instead of integrating a 2-form over a closed surface, we would need to
integrate a 1-form over a closed curve. More concretely, given a closed curve γ
and f : γ → C∗ a global function,

1

2πi

∫
γ

1

f(z)
df

is an integer known as the winding number of f which, as we expect, classifies
topologically a global function.

2.2 Examples
Example 2.2.1. (TS2) We already know that TS2 has structure of line bundle
so our next step will be to construct a connection, ∇ : X(S2) → End(X(S2)), on
it and to do so we will follow [Tu17]. If we think on S2 as a submanifold of R3 the
relation

TpR3 = TpS2 ⊕ Span{vp}

holds for a normal vector vp to TpS2. Let prp : TpR3 → TpS2 be the corresponding
projection. If X ∈ X(R3), then Xp ∈ TpR3. Thus, we can define a smooth vector
field, pr(X), on S2 by

(pr(X))p = prp(Xp) ∈ TpS2.

Let X, Y ∈ X(S2). In general, the directional derivative, DXpY , for some p ∈ S2,
is not tangent to S2 so we define the connection ∇ as

(∇XY )p = ∇XpY = prp(DXpY ).

Now that we know how to build a connection over S2 we are able to make an
explicit calculation. Choose polar coordinates over S2 and an appropriate set of
charts. If we fix a coordinate chart, the tangent vectors at each point turn out to
be

∂

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ)

and
∂

∂ϕ
= (− sin θ sinϕ, sin θ cosϕ, 0).

Let

~n =

∂
∂θ
× ∂

∂ϕ

‖ ∂
∂θ
× ∂

∂ϕ
‖

=
(sin2 θ cosϕ, sin2 θ sinϕ, sin θ cos θ)

sin θ
= (sin θ cosϕ, sin θ sinϕ, cos θ)
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be a normal vector to each tangent space of S2, X ∈ X(S2) an arbitrary vector
field and

Y =
1

sin θ

∂

∂ϕ
= (− sinϕ, cosϕ, 0) ∈ X(S2).

Hence,
∇XY = DXY − 〈~n,DXY 〉~n = cos θ(~n× Y )dϕ(X).

Now, recall that on TS2 we establish that (α+ iβ)v = αv + β(p× v) for v ∈ TpS2

meaning that
∇XY = i cos θY dϕ(X).

So locally, the connection∇ is given by the 1-form ω = i cos θdϕ and the curvature
will be the global 2-form F = i sin θdϕ ∧ dθ. But the volume form for the two
dimensional sphere is given by vol = − sin θdϕ ∧ dθ, therefore, F = −ivol.

We conclude this example calculating the chern class of TS2. Following defini-
tion 2.1.3 we get that

c(TS2) =
1

2πi

∫
S2
F

=
1

2πi

∫
S2
−ivol = −4πi

2πi
= −2.
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Chapter 3

Locally Trivialized Gerbes

We have seen in the first chapter that both complex-valued functions and line
bundles, on a smooth manifold M , can be seen as geometric representations of
cohomology classes in Ȟ0(M,C∞(C∗)) and Ȟ1(M,C∞(C∗)), respectively. In this
chapter we will study a geometric representation for an object in the next degree
in cohomology and, using the tools described in chapter 2, how to give sense to
the “geometry” of this objects often called gerbes.

3.1 What is a Gerbe?
Let M be a smooth manifold and U = {Uα}α∈I a contractible open cover of M .
Following the lines of [Cha98] we will define a gerbe over M as a geometric object
G which realizes a cohomology class [g] ∈ Ȟ2(M,C∞(C∗)). However, the paral-
lelism with the case of cohomology classes in Ȟ1(M,C∞(C∗)) ∼= Ȟ2(M,Z) is not
complete since there is no global object associated to it (like line bundles are asso-
ciated to classes in Ȟ1(M,C∞(C∗)) ∼= H2(M,Z)). Instead, as we will see, we will
have a family of objects associated to the covering which, coherently considered on
the manifold (with respect to the cohomological information) give rise to the gerbe.

Let us start from [g] ∈ Ȟ2(M,C∞(C∗)), this means that for all α, β, γ ∈ I such
that Uαβγ 6= ∅, gαβγ is a C∗-valued smooth map and gαβγ = g−1

βαγ = g−1
αγβ = g−1

γβα.
Also, this collection of maps must satisfy the following cocycle condition

gβγδg
−1
αγδgαβδg

−1
αβγ = 1

on Uαβγδ. We say that we trivialize the cocycle [g] with respect to the covering U
if we have a collection fαβ = f−1

βα : Uαβ → C∗ such that

gαβγ = fβγf
−1
αγ fαβ

and this is of course equivalent to say that gαβγ = (δf)αβγ for f ∈ C1(U , C∞(C∗)).
Two different representations of g in this form, say by δf and δf ′, give rise to a
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line bundle over M as follows. If

gαβγ = fβγf
−1
αγ fαβ = f ′βγ(f

′
αγ)
−1f ′αβ,

and we set hαβ = f ′αβ/fαβ, we will have that

hβγh
−1
αγhαβ = 1,

which, as we saw in the last chapter, defines a line bundle over M . Now, it is
clear that on any open set in the covering we can trivialize in this sense [g] ∈
Ȟ2(M,C∞(C∗)). So if we consider now two open sets Uα and Uβ with non-trivial
intersection Uαβ, we will have on each such open set one trivialization giving rise
to a line bundle Lαβ defined on the intersection Uαβ. This collection of line bundles
prompt the following working definition of what a gerbe over M must be.

Definition 3.1.1. Let M be a manifold and U = {Uα}α∈I an open cover of M .
A locally trivialized gerbe G over M is defined by the following data:

• A line bundle Lαβ, on every Uαβ 6= ∅, such that Lαβ ∼= L−1
βα.

• For all α, β, γ ∈ I such that Uαβγ 6= ∅, a nowhere vanishing section θαβγ ∈
Γ(Uαβγ, Lβγ ⊗ L−1

αγ ⊗ Lαβ) such that θαβγ = θ−1
βαγ = θ−1

αγβ = θ−1
γβα.

• θβγδ ⊗ θ−1
αγδ ⊗ θαβδ ⊗ θ

−1
αβγ = 1 on Uαβγδ.

Thus, we can associate to each θαβγ a map gαβγ : Uαβγ → C∗ giving rise to a
class [g] ∈ Ȟ2(M,C∞(C∗)). Actually, in [Cha98] a notion of equivalence of locally
trivialized gerbes is given in such a way that, as we expect, the following theorem
holds.

Theorem 3.1.1. Let M be a smooth manifold. The collection of equivalence
classes of locally trivialized gerbes is isomoporhic to

Ȟ2(M,C∞(C∗)) ∼= Ȟ3(M,Z).

It is worth to be mentioned that the group operation taken over the set of equiv-
alence classes of locally trivialized gerbes is the tensor product. This product is
obtained by tensoring the pairs of line bundles and the nowhere vanishing sections
in the natural way.

Remark 3.1.1. In general, in the existing literature on “gerbes”, they are de-
scribed as geometric representations of what a cohomology class in Ȟ2(M,C∞(C∗))
is. Thus, there are different approaches to build up such a geometric represen-
tation for a gerbe. The original one was given by Giraud in [Gir71] in terms of
non-abelian cohomology objects (called “faisceaux”, “torseurs”, etc.), then there is
the one used by Brylinski [Bry08] (in terms of groupoids and stacks), during the
90’s the one of bundle gerbes used by the australian school (M. Murray, A. Carey
and co-workers) and the one we follow (N. Hitchin, D. Chaterjee and others).
Notice, however, that the object we call a locally trivialized gerbe in this work is
also called a gerb in Chatterjee’s Ph.D. thesis [Cha98].
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3.2 Examples
Although the definition of locally trivialized gerbes (or simply gerbes) looks quite
involved, in the following examples we will present some particular instances in
which the construction of these objects can be simplified. Indeed, in particular
cases, we can use the Hopf fibration (the generator of the Picard group on the
two dimensional sphere) and appropriate coverings or the 3-sphere to build very
basic gerbes as we are about to explain.

Example 3.2.1. (Gerbes over S1,S2 and S3) Here, we extend what we did in ex-
ample 1.2.1 to the context of gerbes. Since Ȟ3(S1,Z) and Ȟ3(S2,Z) are trivial we
can conclude that the only possible existing gerbes over S1 and S2 are the trivial
ones up to isomorphism. However, since Ȟ2(S2,Z) ∼= Ȟ3(S3,Z) ∼= Z there will be
a gerbe over S3 for each integer, and we can use what we already know about line
bundles over S2 to induce gerbes over S3 as follows.

First, we construct a convenient open cover for S3 and, to do so, choose p ∈ S3

and Up ⊆ S3 an open set containing p such that Up is diffeomorphic to R3. Now,
let U0 = S3 \ {p}, then clearly the set U = {Up, U0} is an open cover for S3. We
need now to bring line bundles over S3 from those we know to exist over S2.

Let us recall the definition of pull-back bundle. Let M,M ′ be differentiable man-
ifolds, a line bundle L over M with projection π : L→M and f : M ′ →M a C∞
map. The pull-back bundle over M ′ is defined to be

f ∗L = {(p′, q) ∈M ′ × L|f(p′) = π(q)}

endowed with the subspace topology. Now, observe that U0p
∼= R3 \{0} ∼= S2×R.

Let π : S2×R→ S2 be the canonical projection and LH be the Hopf Bundle over
S2. With this in mind, we can produce a line bundle over U0p setting L0p := π∗LH .
This allows us to define a gerbe GH over S3 taking L0p on U0 ∩Up and, given that
U has only two open sets, we do not need to care about triple intersections. Notice
that this gerbe is not a line bundle over S3, because it is not defined as a “global”
line bundle over the full of the three dimensional sphere. As a matter of fact, the
gerbe GH is the generator of Ȟ3(S3,Z) ∼= Z [Hit01].

Example 3.2.2. (A gerbe over compact connected Lie group) Given a compact
connected finite-dimensional Lie group G, since Ȟ3(G,Z) ∼= Z [DK00], there is a
gerbe over G for each integer n. Indeed, the de Rham representative for the third
cohomology of G can be written down in terms of two basic operations on the Lie
algebra g of G. Let us denote by [X, Y ] the Lie bracket of two elements X, Y ∈ g,
and 〈, 〉g be a non-degenerate symmetric bilinear form on g. Then, the expression

HG =
1

2
〈[X, Y ], Z〉g,

defines non-trivial 3-form on G. (This 3-form can be written, using the notation
g ∈ G for elements in the Lie group G, as (up to a constant) HG = 1

2
tr(g−1dg)3.)
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3.3 The Geometry of Gerbes
Let M be a smooth manifold, U = {Ui}i∈I a contractible open cover of M and L
a line bundle over M . Recall that a connection on L is a one form ωα on Uα, for
all α ∈ I, such that equation (2.1.0.2) holds on Uαβ. Also, remember that if we
take the exterior derivative on both sides of this equation we get dωα = dωβ so
that there exists a global 2-form, F , such that F |Uα = dωα called the curvature of
the connection.

There is another approach to do this and is by relating the de Rham to the
Čech cohomology. Suppose that F is a closed 2-form on M . By the Poincaré
lemma there exist 1-forms ωα defined on Uα for all α ∈ I such that F |Uα = dωα.
But, dωα − dωβ = d(ωα − ωβ) = 0 on Uαβ so again, by the Poincaré Lemma,

ωα − ωβ = dfαβ

for some fαβ : Uαβ → R. But by the equivalence between the de Rham and
Čech cohomologies one may choose fαβ so that gαβ : Uαβ → C∗, given by gαβ =
exp(2πifαβ), is a cocycle, i.e. the transition function describing a line bundle.
Solving this equality for fαβ one gets

fαβ =
1

2πi
log gαβ.

Hence,

ωα − ωβ = dfαβ = d

(
1

2πi
log gαβ

)
=

1

2πi

dgαβ
gαβ

yielding equation (2.1.0.2).

We can replicate the same idea for a gerbe, G, over a differentiable manifold
M defined by the cocycles gαβγ : Uαβγ → C∗. Doing so we get that there exist a
global closed 3-form, K, a 2-form, Fα, on each Uα ∈ U and a 1-form, ωαβ, on each
non empty double intersection Uαβ such that:

K|Uα = dFα

for all α ∈ I,
Fβ − Fα = dωαβ

on Uαβ and

ωβγ − ωαγ + ωαβ =
1

2πi

dgαβγ
gαβγ

on Uαβγ.

Definition 3.3.1. Let G be the gerbe, over a differentiable manifold M , defined
by the cocycles gαβγ : Uαβγ → C∗. The set of 2-forms Fα for all α ∈ I is what we
define to be a connection on G and the global 3-form K is called the curvature
associated to the connection F .
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Remark 3.3.1. The analogous of the chern class and the winding number for
gerbes is commonly known as the Dixmier-Douady class .

Example 3.3.1. Consider the gerbe GH over the three dimensional sphere S3

constructed in example 3.2.1. In [Hit01] is shown how to realize the volume form
κ := d volS3 as the curvature of a connection on the gerbe GH . Let us denote by
∆ the Laplacian on the 3-sphere, then we can solve the differential equation

∆H = κ

on the open set Up, and we denote the solution by Hp ∈ Ω3(Up) and the differential
equation

∆H = κ+ 2πδp,

where δp denotes the Dirac delta distribution, on the open set U0; we denote the
corresponding solution by H0 ∈ Ω3(U0). Then, there exist 2-forms F0 = d∗H0 and
Fp = d∗Hp on the corresponding open sets in S3 such that

dF0 = dd∗H0 = ∆H0 = κ = ∆Hp = dd∗Hp = dFp

on the intersection U0p. It is then possible to show that

1

2π
(Fp − F0) =

1

2π
d∗(Hp −H0) ∈ H2

dR(U0p,Z),

so that it corresponds to the curvature of a connection on the line bundle L0p over
U0p, i.e. a gerbe connection for GH .
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