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Introduction

Quivers are simple mathematical objects: finite directed graphs. A representation of a quiver

assigns a vector space to each vertex, and a linear map to each arrow of the graph. These objects

were originally introduced to treat problems of linear algebra, but it soon turned out that they

play an important role in representation theory and in algebraic geometry. For instance, it was

shown by M. Reineke that every projective variety is a quiver grassmannian [Rei13].

As with the classical representation theory, a quiver representation can be decomposed, up to

reordering, as the direct sum of indecomposable representations (those that cannot be written fur-

ther as direct sum of representations). Therefore, if one is to know all the representations of a

given quiver, it is enough to understand its indecomposable representations. When the ground

field is assumed to be finite, say the field Fq, one can study a particular type of indecomposable

representations: the absolutely indecomposable ones which are those indecomposable representa-

tions which remain indecomposable when we look at them as representations over F q. In the

1980’s, V. Kac showed that the number of absolutely indecomposable representations with fixed

dimension vector (i.e. the dimensions of the vector spaces that we put at each vertex are fixed),

for a given quiver without loops, is a polynomial in Z[q]. He went further by conjecturing that

the coefficients of this polynomial where actually positive.

For almost twenty years, no progress was made in solving Kac’s conjecture until 2004 when W.

Crawley-Boevey and M. Van den Bergh gave a proof when the dimension vector is assumed to

be indivisible, that is, when the greatest common divisor of its entries is one [CBVdB04]. In

2013 a full proof of the conjecture was given by T. Hausel, E. Letellier and F. Rodríguez Ville-

gas [HLRV13]. The ideas and techniques introduced in these works, has laid the ground and

inspired tremendous breakthroughs in mathematics such as the work by O. Schiffman regarding

the Poincaré polynomial of the moduli space of Higgs bundles over a compact Riemann surface

[Sch16].

In this work we will focus on making a clear picture on the techniques introduced by Crawley-

Boevey and Van den Bergh to count absolutely indecomposable representations and deduce Kac’s

conjecture in the particular setting just explained. The facts presented here are well known but

we gave ourselves the task of writing an expository account of these, providing precise references

whenever it cannot be self-contained.
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Let us now outline the structure of this work and comment a little on the strategy of Crawley-

Boevey and Van den Bergh. In the first chapter we overview the basic theory of quivers and its

representations. In the second chapter, we recollect the main facts of Geometric Invariant Theory

(GIT) that allow us, at the end of the chapter, to construct moduli spaces of quiver representations

as linearised GIT quotients. In the third chapter we introduce representations or modules over

a deformation of the path algebra of a quiver and obtain a smooth variety Xλ from the quotients

obtained in the second chapter. The number of Fq-points of this variety is deeply related to the

desired count of absolutely indecomposable representations. In fact, if we know the number of

rational points of Xλ then we know the desired number of absolutely indecomposable represen-

tations. Unfortunately, there is no much more information we can obtain from this variety so

we introduce a one-parameter family whose generic fiber is equal to Xλ. In the fourth and last

chapter, the purpose of this one-parameter family becomes clear when we see that the number of

Fq-points of both its generic and its special fiber, X0, coincide. What is more, we see that, as the

special fiber satisfies good properties such as being cohomologically pure, it is possible to reduce

the count of the rational points of X0, and hence of Xλ, to a formula depending on the dimension

of the etale cohomology groups of X0. Finally, we rewrite this formula in terms of the singular

complex cohomology groups of the some sort of “complexification” of the special fiber.
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Chapter 1

Quivers

In this chapter, we present fundamental notions and results on quivers and its representations

which will be the framework of this memoir. Throughout this discussion we fix a field k.

1.1 Basic definitions

Definition 1.1. A quiver is a finite directed graph, that is, a tuple Q = (V ,E,h, t) where V is a finite

set of vertices, E is a set of edges and h, t : E→ V maps assigning to each edge its corresponding

head and tail.

Example 1.2. The following graph represents a quiver having only one edge and vertex. It is

known as the Jordan quiver.

1α 99
Note that h(α) = t(α) = 1.

Example 1.3. For the quiver represented by the graph below, one has that t(α) = 1 and h(α) =

h(βi) = t(βi) = 2 for i = 1,2.

1 α // 2

β1

YY

β2

��

Example 1.4. The n-edges Kronecker quiver is the quiver having two vertices, {1,2}, and n-edges,

α1, . . . ,αn such that t(αi) = 1 and h(αi) = 2 for all i = 1, . . . ,n as depicted in the graph below.

1

α1

&&

αn

66
... 2

Example 1.5. Given a quiver Q, we define its double quiver, denoted by Q, to be the quiver having

the same vertices as Q but set of edges given by E = {α,α∗}α∈E where h(α∗) = t(α) and t(α∗) = h(α).

Similarly, the opposite quiver, Qop, has the same vertices as Q and set of edges given by Eop =

{α∗}α∈E .

The latter is an example that we will study in greater detail later.
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Definition 1.6. A non-trivial path in a quiver Q is a sequence α1, . . . ,αk of edges such that t(αi) =

h(αi+1) for all i = 1, . . . , k. On the other hand, the trivial path, for each vertex v ∈ V of Q, is the path

that starts and terminates at v. We denote this path by ev .

Definition 1.7. The path algebra kQ is the k-algebra generated by the edges of the quiver Q. The

product of two edges or paths x,y in this algebra is defined to be:

xy =

concatenation of paths if h(y) = t(x),

0 otherwise.

Here, h(x) and t(x) denote, respectively, the head and the tail of the path x. That is, the vertices

where the path x ends and begins respectively.

Remark 1.8. A basis of kQ as a k-vector space is given by the set of all paths in the quiver Q.

Example 1.9. Let Q be the Jordan quiver in Example 1.2. Note that k[x] � kQ via the unique

algebra morphism sending x to α.

Example 1.10. Let Q be the quiver represented by the graph:

1
α1 // 2

α2 // 3.

Then the basis for the k-vector space underlying kQ is given by the set {e1, e2, e3,α1,α2,α2α1}.

Proposition 1.11. The following are the main properties of the path algebra kQ:

1. The trivial paths are orthogonal idempotents, that is, evew = 0 for v , w and e2
v = ev .

2. kQ has an identity given by

1 =
∑
v∈V

ev .

3. kQ is a finite-dimensional k-vector space if and only if Q does not contain oriented cycles.

That is, if there is no path p of positive length such that h(p) = t(p).

4. The vector subspaces kQew, evkQ and evkQew have as bases the paths starting at v and/or

terminating at w.

5. kQ =
⊕

v∈V kQev so that each kQev is a projective left kQ-module.

6. For any kQ-module M, HomkQ(kQev ,M) � evM.

1.2 Quiver representations

We now introduce representations of quivers and state the relation between them and kQ-modules.

Definition 1.12. A k-representation of a quiver Q is a tuple W := ((Wv)v∈V , (ϕα)α∈E) where:

• For all v ∈ V , Wv is a finite dimensional vector space over k.
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• For all α ∈ E, ϕα : Wt(α)→Wh(α) is a k-linear map.

Definition 1.13. The dimension vector of a representation is the tuple d = (dv := dimWv)v∈V ∈
N
|V |.

We have a notion of morphism between representations of a fixed quiver, so that we can think

of them as a category.

Definition 1.14. Let W,W ′ be two representations of a quiver Q. A morphism f : W → W ′ is

given by a tuple (fv : Wv →W ′v)v∈V such that the diagram

Wt(α) Wh(α)

W ′t(α) W ′h(α)

ϕα

ft(α) fh(α)

ϕ′α

commutes for all α ∈ E.

There are natural notions of direct sums, subrepresentations, kernels and cokernels in the

category of k-representations of a quiver Q, Rep(Q). Indeed, this is actually an abelian category

[Kir16, Section 1.1].

Definition 1.15. Let W,W ′ ∈ Rep(Q), then:

• We define the direct sum W ⊕W ′ ∈ Rep(Q) by (W ⊕W ′)v := Wv ⊕W ′v for all v ∈ V together

with the obvious definition for the linear maps associated to each edge.

• We say that W ′ is a subrepresentation of W if W ′v ⊆Wv is a vector subspace for all v ∈ V such

that ϕα(W ′t(α)) ⊆W ′h(α) for all edge α ∈ E.

• If f : W ′→W is a morphism of representations, then we define the subrepresentations kerf

and imf corresponding to the kernel and image respectively of the maps fv : W ′v →Wv .

• If W ′ is a subrepresentation of W , we define the quotient representation, W/W ′, as (W/W ′)v :=

Wv/W
′
v together with the obvious definition for the linear maps associated to each edge.

The following lemma shows us that we can identify quiver representations and kQ-modules.

Lemma 1.16. [CB92, Chapter 1] The category Rep(Q) is equivalent to the category of kQ-modules.

Proof. We will only discuss how to associate a kQ-module to a given quiver representation and

viceversa. For a quiver representation W , we will endow W =
⊕

v∈V Wv with structure of kQ-

module. We set α1 . . .αkx := ιh(α1)◦ϕα1
◦. . .◦ϕαk

◦πt(αk)(x) with ιv : Wv ↪→W the canonical inclusion

and πv : W → Wv the canonical projection. On the other hand, if W is a kQ-module, define a

representation of Q with Wv = evW and ϕα(x) = eh(α)αx ∈Wh(α).

8



Many notions of the classical representation theory such as simplicity, semisimplicity and the

existence of filtrations can be translated to the quiver representation setting as we will see now

and in the forthcoming chapter.

Definition 1.17. A quiver representation is said to be simple if it does not have a non-trivial

subrepresentation, semisimple if it can be written as the direct sum of simple representations,

indecomposable if it cannot be written as the direct sum of non-trivial subrepresentations and

absolutely indecomposable if it remains indecomposable if we look at it as a k-representation.

Example 1.18. Consider the one edge Kronecker quiver (see Example 1.4). Note that the repre-

sentations Ws = (W1 = k,W2 = 0) and W ′s = (W1 = 0,W2 = k) are simple. However, the representa-

tion Wi = ((W1 = k,W2 = k), (ϕα = Id)) is indecomposable. Otherwise, we would have Wi = Ws⊕W ′s
which is impossible since Ws is not even a subrepresentation of Wi .

The following lemma characterizes indecomposable kQ-modules or representations:

Lemma 1.19. [Bri12, Lemma 1.3.3] Given a finite-dimensional module M over the path algebra

kQ, the following conditions are equivalent:

1. M is indecomposable.

2. Any kQ-endomorphism of M is either nilpotent or invertible.

3. EndkQ(M) = I ⊕ kIdM where I is a nilpotent ideal.

Remark 1.20. One can show that EndkQ(M) is a local ring such that, for k = Fq,

|EndkQ(M)|
|AutkQ(M)|

=
q

q − 1
.

For more details on this we refer the reader to [Ben98, Chapter 1] and [Hos18, Lemma 5.17].

And we have the following decomposition theorem, which is a particular case of the Krull-

Schmidt theorem for Artinian modules [Ben98, Theorem 1.4.6]:

Theorem 1.21. [Bri12, Theorem 1.3.4] Any finite-dimensional representation of Q can be written

as direct sum of indecomposable representations. This decomposition is unique up to reordering.

1.3 The standard resolution

The kQ-module point of view on representations of a quiver gives us the following result, known

as the standard resolution.

Theorem 1.22. Let M be a kQ-module. Then, there is an exact sequence

0
⊕

α∈E kQeh(α) ⊗k et(α)M
⊕

v∈V kQev ⊗k evM M 0
∂1 ∂0
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where ∂0(p ⊗ x) = px for p ∈ kQev , x ∈ evM and ∂1(p ⊗ x) = pα ⊗ x − p ⊗ αx for p ∈ kQeh(α) and

x ∈ et(α)M.

Proof. We will start by checking that ∂0 is surjective. Let x ∈M and, by the first two properties in

Proposition 1.11, observe that

∂0

(∑
v∈V

ev ⊗ evx
)

=
∑
v∈V

evx = x

which gives the desired surjectivity.

Secondly, we will check the exactness of the sequence in the middle. Let p ∈ kQeh(α) and x ∈
et(α)M. By direct computation,

∂0 ◦∂1(p⊗ x) = ∂0(pα ⊗ x − p⊗αx) = pαx − pαx = 0

which means that Im(∂1) ⊆ ker(∂0). In order to see the other inclusion, we need to work a little

bit more. Observe that every element ξ ∈
⊕

v∈V kQev ⊗k evM can be written uniquely as

ξ =
∑
v∈V

∑
p path

such that t(p)=v

p⊗ xp

where the xp ∈ et(p)M are almost all zero. We set deg(ξ) := length of the longest path p such that

xp , 0. If p is a non-trivial path with t(p) = v then we can write p = p′α with α ∈ E such that

t(α) = v and p′ a path starting at h(α). Moreover, ∂1(p′ ⊗ xp) = p⊗ xp − p′ ⊗αxp, where the length

of the path p′ is the length of p minus one. So, recursively one can see that the class of p ⊗ xp
modulo Im(∂1) always contains an element of degree zero. Consequently, for ξ ∈ ker(∂0) and ξ ′

an element of degree zero in the class of ξ modulo Im(∂1) we have

0 = ∂0(ξ) = ∂0(ξ ′) = ∂0

(∑
v∈V

ev ⊗ x′ev

)
=

∑
v∈V

x′ev ∈
⊕
v∈V

evM

which implies that ξ ′ = 0. Thus, ξ ∈ Im(∂1) and ker(∂0) ⊆ Im(∂1).

Finally, we need to check that ∂1 is injective. Suppose there exists a non-zero ξ ∈ ker(∂1). This

element can be written as

ξ =
∑
α∈E

∑
p, path

such that t(p)=h(α)

p⊗ xα,p

where the xα,p ∈ et(α)M are almost all zero. Let p′ the path of maximal length such that xα,p′ , 0,

then

∂1(p′ ⊗ xα,p′ ) = p′α ⊗ xα,p′ − p′ ⊗αxα,p′ .

Hence, ∂1(ξ) , 0 which leads to a contradiction.
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Remark 1.23. The resolution in Theorem 1.22 is a projective resolution of the kQ-module M.

Indeed, for V an arbitrary kQ-module, kQev ⊗k V is isomorphic to dimV copies of the projective

module kQev .

Theorem 1.22 implies the following lemma which will be useful on the forthcoming sections.

Lemma 1.24. Let W,W ′ be representations of Q. Then, there is an exact sequence

0 Hom(W,W ′)
⊕

v∈V Hom(Wv ,W
′
v)

⊕
α∈E Hom(Wt(α),W

′
h(α)) Ext1(W,W ′) 0.

Proof. Let M,M ′ be the kQ-modules associated to the representations W and W ′ respectively.

We apply the contravariant functor Hom(·,M ′) to the standard resolution, so we get the exact

sequence

Ext1(M,M ′) // Ext1(
⊕

v∈V kQev ⊗k evM,M ′) // · · ·

0 // Hom(M,M ′) // Hom(
⊕

v∈V kQev ⊗k evM,M ′) // Hom(
⊕

α∈E kQeh(α) ⊗k et(α)M,M ′)

00

Since both
⊕

v∈V kQev⊗k evM and
⊕

α∈E kQeh(α)⊗k et(α)M are projective, the corresponding func-

tors functors Exti(
⊕

v∈V kQev ⊗k evM,_) and Exti(
⊕

α∈E kQeh(α) ⊗k et(α)M,_) will vanish for all

i > 0. Now, for all v ∈ V , observe that

Hom(kQev ⊗k evM,M ′) � kQe∨v ⊗k evM∨ ⊗kQ M ′ � kQe∨v ⊗k Hom(kQev ,M
′).

Moreover, Property 6 in Proposition 1.11 gives us that Hom(kQev ,M
′) � evM

′. Thus,

Hom(kQev ⊗k evM,M ′) � evM
∨ ⊗k evM ′ �Hom(evM,evM

′).

By the equivalence of categories in Lemma 1.16 we have Hom(evM,evM
′) �Hom(Wv ,W

′
v). Similar

argument works for the other term in the sequence and the result follows.

Corollary 1.25. Let d,d′ ∈N|V | be any two dimension vectors associated to the quiver Q. Then,

for all d-dimensional and d′-dimensional representations of Q, W and W ′ respectively, we have

that dim(Hom(W,W ′))−dim(Ext1(W,W ′)) is a constant on the dimension vectors d and d′.

Proof. The exact sequence in the previous lemma yields

dim(Hom(W,W ′)) + dim
(⊕
α∈E

Hom(Wt(a),W
′
h(a))

)
= dim

(⊕
v∈V

Hom(Wv ,W
′
v)
)

+ dim(Ext1(W,W ′)).

Therefore,

dim(Hom(W,W ′))−dim(Ext1(W,W ′)) =
∑
v∈V

dvd
′
v −

∑
α∈E

dt(α)d
′
h(α).
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Remark 1.26. The bilinear form on Z
|V |,

⟨d,d′⟩Q :=
∑
v∈V

dvd
′
v −

∑
α∈E

dt(α)d
′
h(α)

is commonly known in the literature as the Euler form associated to the quiver Q [Hos18, Defini-

tion 2.4].
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Chapter 2

Moduli of quiver representations

For a fixed quiver Q and a fixed field k, we are interested in classifying all its k-representations

with fixed dimension vector d ∈N|V |, up to isomorphism. The affine space

Rep(Q,d) :=
⊕
α∈E

Mat(dh(α),dt(α), k)

parametrices the the d-dimensional representations over k of the quiver Q. So, we will often write

a representation W ∈ Rep(Q,d) just as a tuple W = (ϕα)α∈E where ϕα ∈Mat(dh(α),dt(α), k).

One can consider the orbit space Rep(Q,d)/GLd where GLd :=
⊕

v∈V GL(αv , k) acts by conju-

gation. More explicitly, for M = (Mv)v∈V ∈GLd and ϕ = (ϕα : kdt(α) → kdh(α))α∈E ∈ Rep(Q,d),

M ·ϕ = (Mh(α)ϕαM
−1
t(α))α∈E . (2.1)

The points of this orbit space are in bijection with the desired isomorphism classes of representa-

tions of the quiver Q (see Lemma 2.2). However is generally bad behaved in the sense that it does

not have, in many cases, a suitable algebraic structure.

Example 2.1. Consider the orbit space Rep(Q,2)/GL(2,C) of the two-dimensional complex rep-

resentations of the Jordan Quiver, studied in Example 1.2, which corresponds to the set of 2 × 2

matrices modulo conjugation. If we endow this orbit space with the quotient topology, there are

points which are not closed so it does not admit a structure of complex algebraic variety. To see

this, we consider the image of the set{1 t

0 1

 ∣∣∣∣∣t ∈ (0,1)
}
⊆ End(C2)

under the canonical projection Rep(Q,2)→ Rep(Q,2)/GL(2,C). This is given by the orbit of the

Jordan block 1 1

0 1

 .
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However, this point is not closed in the quotient since its preimage does not contain the point

lim
t→0

1 t

0 1

 =

1 0

0 1

 .
The previous discussion tells us that we have to think on quotients in a different way and not

necessarily as orbit spaces. To do so, we will use Geometric Invariant Theory (GIT). But before,

we will dive deeper into the geometry of the orbits of the aforementioned action of the group GLd

in Rep(Q,d).

2.1 Geometry of orbits

The main reference we follow in this section is [Kir16, Chapter 2] and we assume k to be an

algebraically closed field. We start with the description of the orbit and stabilizers of the action

at hand:

Lemma 2.2. Let W = (ϕα)α∈E ∈ Rep(Q,d). Then:

1. OW := GLd ·W = {W ′ ∈ Rep(Q,d)|W �W ′}.

2. StabGLd
(W ) = AutQ(W ).

Proof. Observe that W ′ = (ϕ′α)α∈E ∈OW if and only if there exists M = {Mv}v∈V ∈GLd such that

M ·W = (Mh(α)ϕαM
−1
t(α))α∈E = (ϕ′α)α∈E = W ′ .

This is equivalent to saying that Mh(α) ◦ϕα = ϕ′α ◦Mt(α), for all α ∈ E. Then, the diagram in Defi-

nition 1.14 commutes which means that M is a morphism of d-dimensional representations of Q.

Moreover, since M is invertible, W �W ′ and the first part of the lemma follows.

The second statement of the lemma is a direct consequence of the previous discussion. Observe

that M ∈ StabGLd
(W ) ⊆ GLd satisfies Mh(α)ϕα = ϕαMt(α) for all α ∈ E. That is, M is an automor-

phism of W ∈ Rep(Q,d).

As the action on GLd in Rep(Q,d) is algebraic, we are particularly interested in understanding

the closed orbits which are precisely the points of the GIT quotient that we will define in the next

section. We start with a proposition that relates the orbits of direct sums of representations with

extensions.

Proposition 2.3. Let

0 W ′ W W ′′ 0

be an exact sequence of representations of Q. Then OW ′⊕W ′′ ⊆OW .
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Proof. We choose an isomorphism W �W ′ ⊕W ′′ as vector spaces. Then, for all α ∈ E,

ϕα =

ϕ′α Mα

0 ϕ′′α

 .
Here ϕα ,ϕ

′
α and ϕ′′α are the corresponding linear maps between the source and the target vector

spaces, of the representations W,W ′ and W ′′ respectively, associated to α ∈ E.

We consider as well the one-parameter subgroup λ : Gm→GLd given by

λ(t) =
{tIddim(W ′

v) 0

0 Iddim(W ′′
v )

}
v∈V

and observe that

λ(t) ·ϕ =
{ϕ′α tMα

0 ϕ′′α

}
α∈E

.

Making t→ 0 we can see that W ′ ⊕W ′′ is in the closure of OW from which the result follows.

Now we introduce a useful definition that will help us to state the main results of the section:

Definition 2.4. A filtration, F , for a quiver representation W ∈ Rep(Q,d) is a decreasing chain of

subrepresentations

W = W0 ⊃W1 ⊃W2 ⊃ . . . ⊃Wn = {0}

and the associated graded representation is

gr F =
⊕

Wj /Wj+1 ∈ Rep(Q,d).

Lemma 2.5. Let W = ((Wv)v∈V , (ϕα)α∈E),W ′ ∈ Rep(Q,d). Then:

1. If W ′ � gr F for some filtration F of W , then OW ′ ⊆OW .

2. If the orbit OW ′ is closed, then the converse also holds. That is, if OW ′ ⊆OW then W ′ � gr F
for some filtration F of W .

Proof. By induction on the length of the filtration and Proposition 2.3 we can show the first state-

ment of the theorem.

For the converse statement, we will need a lemma which tells us that for a closed and GLd-

invariant subset Y ⊆ Rep(Q,d) such that Y ∩ OW , ∅, there exists a one-parameter subgroup

λ : Gm→GLd such that limt→0λ(t)·W ∈ Y [Kem78, Theorem 1.4]. So if we assume that OW ′ ⊆OW ,

by the aforementioned lemma and the fact that OW ′ is closed, there exist a one-parameter sub-

group λ such that limt→0λ(t) ·W = W0 = ((W0,v)v∈V , (ϕ0,α)α∈E) for some W0 �W ′.

This one-parameter subgroup induces as well a Gm-representation on the family of vector spaces

15



underlying W and, by a well-known fact from algebraic group theory [Spr98, Section 3.2.13], we

can decompose, for all vertex v ∈ V ,

Wv =
⊕
n∈Z

W n
v

where λ(t)|W n
v

= tn. Therefore, for all edge α ∈ E, the linear maps ϕα : Wt(α)→Wh(α) can be writ-

ten as ϕα =
⊕

ϕm,n
α for ϕm,n

α : W n
t(α)→Wm

h(α) linear maps.

By the previous discussions, the action of Gm on the family (ϕα)α∈E is given by λ(t) · ϕα =∑
tm−nϕm,n

α so W0 = limt→0λ(t) ·W exists if and only if ϕm,n
α = 0 for all m < n because otherwise

tm−n→∞ as t→ 0. This implies that the subspaces W ≥k = {W ≥kv }v∈V , where

W ≥kv =
⊕
m≥k

Wm
v ,

define subrepresentations of Q. Thus, we get a filtration, F , of W :

· · · ⊃W ≥−1 ⊃W ≥0 ⊃W ≥1 ⊃ · · ·

where W ≥n = 0 for n≫ 0 and W ≥n = W for n≪ 0. The underlying vector spaces, associated to

the corresponding graded representation, are given by

(gr F )v =
⊕
n∈Z

W ≥nv /W ≥n+1
v =

⊕
n∈Z

W n
v

for all v ∈ V . And the corresponding linear maps, attached to each edge α ∈ E, will be given by⊕
ϕn,n
α = limt→0λ(t) ·ϕα = ϕ0,α. Therefore, gr F �W0 �W ′ which concludes the proof.

The following example deals with a type of filtration of particular interest to us:

Example 2.6. A filtration, F , of W ∈ Rep(Q,d) is said to be a composition series if all the quotients

Wj /Wj+1 are simple representations. Its corresponding graded representation, W ss := gr F , is

called the semisimplification of W as it is a semisimple representation.

The Jordan-Hölder theorem asserts that any two composition series for W have the same length

and that the sets of simple representations appearing in its graded representations, counted with

multiplicity, are the same [Ben98, Theorem 1.14] , [Kir16, Section 2.3]. The latter means that W ss

does not depend on the choice of the composition series which justify the notation adopted.

With what we have learned about the action of GLd on Rep(Q,d) we can now state and prove

the main result of this section.

Theorem 2.7. Let W ∈ Rep(Q,d), then

1. OW is closed if and only if W is semisimple.

2. The closure of OW contains a unique closed orbit, namely the orbit of its semisimplification,

OW ss .
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Proof. We start with the proof of the first part of the theorem. By Lemma 2.5 we have that

OW ss ⊆OW so if OW is closed then W is semisimple. Now, we prove the converse so we assume W

to be semisimple. If there exists a closed orbit contained in OW , by the second part of Lemma 2.5,

OW is closed. So we only need to check what happens in the case where, hypothetically, OW does

not contain closed orbits. It is a standard fact of actions of algebraic groups on vector spaces that

the closure of OW is a union of orbits [Kir16, Section 2.2], so let OW ′ ⊆OW be a non-closed orbit.

Then, we can find a GLd-invariant polynomial whose value on the semisimplifications of W and

W ′ is equal if and only if these are isomorphic [Bri12, Lemma 2.3.3]. But, as it is continuous, such

a polynomial must be constant on orbits and its closures meaning that the semisimplification of

W ′ must coincide with W . Thus, OW is closed.

For the second part of the theorem, let us assume that there are two closed orbits OW1
and OW2

contained in OW . Then, by the second part of Lemma 2.5, we have that there must exist filtrations,

F1 and F2, of some representation V , such that W1 = gr F1 and W2 = gr F2. But, since these two

orbits are closed, W1 and W2 are semisimple representations and, therefore, by the Jordan-Hölder

theorem we must have that W1 �W2.

The following corollary partially explains Theorem 2.9 which, as we will see, is one of the

main motivations for considering linearized GIT quotients.

Corollary 2.8. Let Q be a quiver without oriented cycles, then Rep(Q,d) contains a unique closed

orbit, namely the orbit of the trivial representation, which lies in the closure of any other orbit.

Proof. For all v ∈ V , let Sv be the simple representation of Q such that Sv
v′ = kδvv′ together with

the zero morphism for every edge α ∈ E. One can show that every simple representation of

Q is isomorphic to Sv for some v ∈ V [Bri12, Proposition 1.3.1]. Therefore, the origin or zero

representation will be the unique point in Rep(Q,d) being semisimple. Moreover, every other

orbit closure contains the origin’s orbit.

2.2 A few words on Geometric Invariant Theory

Since Rep(Q,d) is an affine variety (it can be identified with an affine k-vector space) and GLd

a reductive algebraic group, a reasonable quotient may be given by the prime spectrum of the

finitely-generated algebra of GLd-invariant polynomials (see [New78, Theorem 3.4]) on the vector

space Rep(Q,d),

Rep(Q,d) � GLd := Spec(OGLd

Rep(Q,d)).

This is a categorical quotient in the sense that there exist a surjective morphism p : Rep(Q,d)→
Rep(Q,d) � GLd , induced by the injection OGLd

Rep(Q,d) ↪→ ORep(Q,d), such that every GLd-invariant

morphism of schemes f : Rep(Q,d) → Y factors uniquely through p. And, moreover, one can

show that the fiber above any point of the GIT quotient via p is stable under the action of GLd

and contains exactly one closed orbit [Rei08, Section 3.3]. This means, in the words of Theorem

2.7, that p sends a representation to its corresponding semisimplification.
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The following theorem due to Le Bruyn and Procesi gives us a better understanding of the al-

gebra OGLd

Rep(Q,d) and therefore of the categorical quotient in consideration.

Theorem 2.9. [LBP90, Theorem 1] The algebra of invariants OGLd

Rep(Q,d) is generated by traces of

oriented cycles in the quiver Q.

So, if the quiver Q has no oriented cycles, OGLd

Rep(Q,d) = k and Rep(Q,d) � GLd = {point}. This

theorem shows as well that the categorical quotient may often be reduced to a point which is not

geometrically interesting. Instead, A.King constructed a richer quotient by imposing a stability

condition to the representations we are classifying [Kin94]. In the reminder of this chapter we

will outline King’s approach.

Let X be an affine k-variety, that is, a reduced and separated affine scheme of finite type over

the field k. Assume that G is a reductive algebraic group acting on X and let χ : G→ Gm be an

algebraic group homomorphism usually called character. We have an action of G on the trivial

line bundle over the variety X, L := X ×A1
k given by g(x,z) = (g ·x,χ(g−1)z). This action extends to

one on the algebra of regular functions of L, OL := OX ⊗k k[z] � OX[z], which preserves its natural

grading. Indeed, for any g ∈ G, and f zj ∈ OL a homogeneous component, g · (f zj ) = g · f (χ(g)z)j

which is again a homogeneous component of degree j. Moreover, f zj will be G-invariant if and

only if g · f (χ(g)z)j = f zj . Thus, we have the graded decomposition

OG
L =

⊕
j≥0

Oχj

X

for Oχj

X = {f ∈ OX | f (gx) = χ(g)jf (x) for all x ∈ X and g ∈ G} and we can consider the quasi-

projective scheme

X �χ G := Proj(OG
L ).

The GIT quotient that we have just constructed, by a G-linearization or linearization of the action

of G on X, has a more interesting geometry as the following example intends to show.

Example 2.10. Let Gm act on A
2
C

by t(x,y) = (tx, ty) and p(x,y) ∈ C[x,y] a Gm-invariant polyno-

mial. Then, as the induced action on polynomials preserves the grading, we must have that

t · pd(x,y) = pd(t−1x, t−1y) = t−dpd(x,y) = pd(x,y)

for pd the homogeneous component of degree d of p. This implies that p must be constant and

therefore

A
2
C

�Gm = Spec(C) = {point}.

Now we consider the identity morphism χ : Gm→Gm. Thus,

A
2
C

�χ Gm = Proj(OX) = Proj(C[x,y]) = P
1
C
.
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To better understand the GIT quotient at hand we introduce the following definitions:

Definition 2.11. A point x ∈ X is called χ-semistable if there exists d ≥ 1 and f ∈ Oχd

X such that

x ∈ Xf := {y ∈ X | f (y) , 0}. We denote the set of χ-semistable points as Xχ−ss. If in addition, the G-

orbits of Xf are closed in Xf and the stabilizer of x in G is finite, x is said to be χ-stable. We denote

the set of χ-stable points as Xχ−s. Finally, two χ-semistable points are said to be S-equivalent if

and only if the closure of their corresponding orbits intersect in Xχ−ss.

The theorem that we are about to state, known as the Hilbert-Mumford criterion, gives us

necessary and sufficient conditions for a point to be semistable or stable when k is an algebraically

closed field. Let λ : Gm → G be a one-parameter subgroup of G. For any such subgroup and

character χ : G→Gm we define ⟨λ,χ⟩ from the equality χ(λ(t)) = t⟨λ,χ⟩.

Theorem 2.12. A point x ∈ X is semistable, respectively stable, if and only if for any one-parameter

subgroup λ such that limt→0λ(t) · x exists we have ⟨λ,χ⟩ ≥ 0, respectively ⟨λ,χ⟩ > 0.

As with the non-linearized case, we have an injection OG
L ↪→ OL which, after identifying

Proj(OL) with X, induces a map X → X �χ G which we can restrict to the, by definition, open

set Xχ−ss .

Theorem 2.13. [Dol03, Theorem 8.1] The map

p : Xχ−ss→ X �χ G

is a categorical quotient where any two points x,x′ ∈ Xχ−ss have the same image under this map

if and only if they are S-equivalent. Moreover, there exists an open subset U ⊆ X �χ G such that

p−1(U ) = Xχ−s and the restriction of p to Xχ−s is a geometric quotient, that is, an orbit space.

Finally, it is worth mentioning that from the construction of the linearized GIT quotient we

have an injection of algebras Oχ0

X = OG
X ↪→ OG

L which in turn induces a projective morphism of

schemes

π : X �χ G→ X �G.

As a matter of fact, by Theorem 2.9, if Q is a quiver without oriented cycles, then X �χ G will be

a projective variety.

2.3 The moduli space of quiver representations

The goal of the final section of this chapter is to specialize the discussions of the previous two

sections to the quiver setting. First, we observe that the diagonal subgroup ∆ = {(tIddv )v∈V | t ∈
Gm ⊆ GLd} � Gm acts trivially on Rep(Q,d) so it is contained in the stabilizer of any point. This

implies that the action of GLd factors through the group Gd := GLd/∆ and thus taking a quotient

of the action of GLd is equivalent to a quotient of the action of Gd .
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For λ = (λv)v∈V ∈Z|V | consider the character χλ : GLd →Gm given by

χλ((Mv)v∈V ) :=
∏
v∈V

(detMv)λv .

Hence, if one is to induce a linearized GIT quotient from χλ one should ask, by the previous

discussion, that χλ(∆) = 1 or, equivalently, that d ·λ = 0. If we fix such a character, we will have,

by Theorem 2.13, the categorical and geometric quotients

pC : Rep(Q,d)χλ−ss→ Rep(Q,d) �χλ
Gd and pG : Rep(Q,d)χ−s→ Rep(Q,d)χ−s/Gd

respectively. The right-most spaces are called the moduli spaces of χλ-semistable and χλ-stable
quiver representations respectively.

In Theorem 2.7, we showed that the Zariski closure of a GLd-orbit contains a unique closed orbit,

namely the orbit of its corresponding semisimplification. Then, as Rep(Q,d)�χλ
Gd parametrizes

χλ-semistable representations up to S-equivalence, this linearized GIT quotient actually classi-

fies the closed orbits of the set Rep(Q,d)χλ−ss. Moreover, if we identify Rep(Q,d) �χλ
Gd with the

aforementioned set of closed orbits, then the map pC sends an orbit of Rep(Q,d)χλ−ss to the orbit

of its corresponding semisimplification.

One of the key points of the construction of these moduli spaces by King was to translate the

GIT stability condition into a representation-theoretic one. Let us then introduce this alternative

notion of stability:

Definition 2.14. Let λ ∈ Z
|V | such that λ · d = 0. A d-dimensional k-representation W of the

quiver Q is λ-semistable (stable) if λ · dimW ′ ≥ 0 (λ · dimW ′ > 0) for all proper and non-trivial

k-subrepresentation W ′ ⊂W .

Remark 2.15. For λ ∈Z|V |, we define the slope of a representation W ∈ Rep(Q,d) as

µλ(W ) =
∑

v∈V −λvdv∑
v∈V dv

∈Q.

We say that W is semistable (stable) if µλ(W ′) ≤ µλ(W ) (µλ(W ′) < µλ(W )) for all proper and non-

trivial subrepresentations W ′ ⊆W . One can show that slope λ-stability is equivalent to λ-stability

as in the previous definition. We refer the reader to [Rei08, Section 4] for more details on this.

And, as one would expect:

Theorem 2.16. [Kin94, Proposition 3.1] Let λ ∈ Z|V | such that λ · d = 0. Then a representation

W ∈ Rep(Q,d) is χλ-semistable (χλ-stable), if and only if W is λ-semistable(λ-stable).

Remark 2.17. For λ = 0, the previous theorem implies that a representation is λ-stable if and

only if is simple. For λ , 0 we have that every simple representation is λ-stable.
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Example 2.18. Let Q be the Kronecker quiver with n edges (see Example 1.4). For the dimen-

sion vector d = (1,1) we can identify Rep(Q,d) � A
n
k and the action of GLd = Gm ×Gm on this

space, following Equation 2.1, will be given by (t1, t2) · x = diag(t2t
−1
1 , . . . , t2t

−1
1 )x. Also, we note

that ORep(Q,d) � k[x1, . . . ,xn] and that, by Theorem 2.9, OGLd

Rep(Q,d) = k as Q has no oriented cycles.

Hence, Rep(Q,d) � GLd = Spec(OGLd

Rep(Q,d)) = {point}.

We now study the GIT quotients and semistable loci for λ+ = (1,−1) and λ− = (−1,1). Fix a

representation x ∈ Rep(Q,d) and observe that if x , 0, the non-trivial and proper subrepre-

sentations have dimension vector (0,1). On the other hand, if x = 0 we have two possible di-

mension vectors for the proper and non-trivial subrepresentations, these are (0,1) and (1,0). So

if x is a λ+-semistable representation, then for every proper and non-trivial subrepresentation,

with dimension vector (d1,d2), we must have (d1,d2) · λ+ = d1 − d2 ≥ 0 which is absurd. Hence,

Rep(Q,d)λ+−ss = ∅. A similar argument when x is assumed to be λ−-semistable lead us to con-

clude that Rep(Q,d)λ−−ss = A
n
k \ {0}.

Finally, we will give an explicit description of the GIT quotient Rep(Q,d) �χλ−
GLd . We observe

that the character χλ− : GLd → Gm is given by (t1, t2) 7→ t2/t1 and therefore the action of GLd on

the trivial bundle L = Rep(Q,d)⊗A1
k will be given by (t1, t2) · (x,y) = ((t1, t2) · x, (t1/t2)y). We have

then a graded decomposition

OGLd
L �

⊕
j≥0

O
χ
j
λ−

A
n
k

where O
χ
j
λ−

A
n
k

= {f ∈ k[x1,. . .xn] | f homogeneous of degree j}. Thus,

Rep(Q,d) �χλ−
GLd = Proj(OGLd

L ) = Proj(k[x1, . . . ,xn]) = P
n−1
k

and the map pC : Rep(Q,d)λ−−ss → Rep(Q,d) �χλ−
GLd , introduced in Theorem 2.13, is just the

canonical projection.

We would like to finish this chapter by summarizing, in the following diagram, the moduli

spaces and the corresponding quotient maps that we have introduced along the way:

Rep(Q,d)λ−s Rep(Q,d)λ−ss Rep(Q,d)

Rep(Q,d)λ−s/Gd Rep(Q,d) �χλ
Gd Rep(Q,d) � Gd .

pG

Open

pC

Open

p

Open
π

Projective
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Chapter 3

Nakajima quiver varieties

The quiver varieties we are going to deal with in this section were introduced by Nakajima

with the purpose of studying some type of Yang-Mills equations on a particular class of four-

dimensional manifolds called ALE spaces [Nak94]. These varieties have a rich geometry which

can be studied by exploiting the canonical symplectic structure of the cotangent bundle of the

affine space Rep(Q,d). In our context, Nakajima quiver varieties will reduce our problem at

hand, which is counting absolutely indecomposable d-dimensional representations over Fq, to

count Fq-points on these.

3.1 The moment map and the deformed preprojective algebra

From now on, Q = (V ,E,h, t) will be a finite quiver without loops and let Q, Qop its corresponding

doubled and opposite quivers respectively (see Example 1.5). For d ∈N|V |, we have a bijection

Rep(Q,d) � Rep(Q,d)⊕Rep(Qop,d).

The vector space Rep(Qop,d) �
⊕

α∈E Mat(dt(a),dh(a), k) can be identified with the dual of the vec-

tor space Rep(Q,d) via the map

Rep(Qop,d)→ Rep(Q,d)∨

(Yα∗)α∈E 7→ ((Xα)α∈E 7→
∑

α∈E Tr(XαYα∗)).
(3.1)

Therefore,

Rep(Q,d) � Rep(Q,d)⊕Rep(Q,d)∨ � T ∗Rep(Q,d)

where T ∗Rep(Q,d) stands for the cotangent bundle of Rep(Q,d). In what follows, π : T ∗Rep(Q,d)→
Rep(Q,d) will be the canonical projection onto the first factor.

We consider as well the map

µ : Rep(Q,d)→ gd

(Xα ,Xα∗)α∈E 7→
∑

α∈E[Xα ,Xα∗]
(3.2)
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for gd = {(Mv)v∈V ∈ gld |
∑

v∈V Tr(Mv) = 0} the Lie algebra of the algebraic group Gd (see Section

2.3) and gld the lie algebra of GLd . This map can be regarded as a moment map with respect to the

symplectic structure of the cotangent bundle T ∗Rep(Q,d) given by the differential form

ω(X,Y ) =
∑
α∈E

Tr(XαYα∗ −Xα∗Yα) (3.3)

where X = (Xα ,Xα∗)α∈E ,Y = (Yα ,Yα∗)α∈E are points in T ∗Rep(Q,d) � Rep(Q,d) [Hos18, Section

4.1].

Remark 3.1. For the sake of simplicity, we denoted in Equation 3.2,

∑
α∈E

[Xα ,Xα∗] :=
( ∑

α∈E
h(α)=v

XαXα∗ −
∑
α∈E

t(α)=v

Xα∗Xα

)
v∈V

.

Our goal now is to understand the fibers of the moment map. Recall the path algebra kQ and

the trivial path ev introduced, respectively, in Definition 1.6 and Definition 1.7, and let λ ∈ k|V |.
The quotient

Πλ = kQ

/(∑
α∈E

[α,α∗]−
∑
v∈V

λvev

)
.

is called the deformed preprojective algebra. By Lemma 1.16, the category of Πλ-modules is equiv-

alent to the category of representations ((Wv)v∈V , (ϕα ,ϕα∗)α∈E) of the doubled quiver Q such that

∑
α∈E

h(α)=v

ϕαϕα∗ −
∑
α∈E

t(α)=v

ϕα∗ϕα = λvIdWv
(3.4)

for all v ∈ V . In particular, note that

Tr
(∑
α∈E

[ϕα ,ϕα∗]
)

= Tr
(∑
v∈V

λvIdWv

)
= 0.

The previous discussions can be summarized in the following lemma:

Lemma 3.2. [CBVdB04, Lemma 2.1.1] If λ ∈ k|V | is such that λ·d , 0 then µ−1(λ) = Rep(Πλ,d) = ∅.

Remark 3.3. In the previous lemma we identified tht tuple (λvIdWv
)v∈V with the vector λ ∈ k|V |

and Rep(Πλ,d) with the subvariety of Rep(Q,d) given by representations satisfying Equation 3.4

for all v ∈ V .

Our goal is to count absolutely indecomposable representations of Q with dimension vector d

over Fq so at this point, is natural to ask how do the double quiver Q and the deformed prepro-

jective algebra Πλ fit in this picture. The following proposition is a first step towards answering

this question.
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Proposition 3.4. [CB01, Theorem 3.3] Let k be an algebraically closed field and W = (ϕα)α∈E ∈
Rep(Q,d). Then W ∈ π(Rep(Πλ,d)) = π(µ−1(λ)) if and only if the dimension vector, d′ ∈ Z|V |, of

any given direct summand of W satisfies λ · d′ = 0. In this case, π−1(W ) = Ext1(W,W )∨.

Proof. We start by taking W ′ = W in Lemma 1.24. After dualizing and identifying, via the trace

pairing in Equation 3.1, Rep(Qop,d) � Rep(Q,d)∨ and gld � gl∨d we get the exact sequence:

0 Ext1(W,W )∨ Rep(Qop,d) gld End(W )∨ 0.
∂̃1 ∂̃0

We can be more explicit in describing ∂̃0 and ∂̃1. By the equivalence of categories described in

Lemma 1.16 we can see that

∂̃1((ϕα∗)α∈E) =
∑
α∈E

[ϕα ,ϕα∗] and ∂̃0((θv)v∈V ) =
(
(φv)v∈V 7→

∑
v∈V

Tr(θvφv)
)

for all (ϕα∗)α∈E ∈ Rep(Qop,d) and (θv)v∈V ∈ gld . In particular, this implies that if W ∈ π(µ−1(λ))

then
∑

v∈V λvTr(φv) = 0 for all (φv)v∈V ∈ End(W ).

With the previous discussion in mind, suppose that W ∈ π(µ−1(λ)) has a direct summand with

dimension vector d′ ∈ N|V |. Then, for (φv)v∈V ∈ End(W ) the morphism given by the projection

onto this summand, we have 0 =
∑

v∈V λvTr(φv) = λ · d′ which proves one side of the implication.

For the other direction, by Theorem 1.21 it is sufficient to check the statement for W indecom-

posable whose dimension vector, d ∈ Z
|V |, satisfies d · λ = 0. We recall that, by Lemma 1.19,

all φv : Wv → Wv in (φv)v∈V ∈ End(W ) is the sum of a multiple of the identity and a nilpotent

element. More explicitly, there exists t ∈ k such that for all v ∈ V , φv = tIddim(Wv) + Nv with

Nv a nilpotent matrix. Thus, by considering λ as an element in gld , we can see that ∂̃0(λ) = 0

and, by exactness of the sequence above, it is in the image of ∂̃1. This implies that there exists

W ′ ∈ Rep(Qop,d) such that ∂̃1(W ′) = λ and π(W,W ′) = W , or in other words, that W ∈ π(µ−1(λ)).

Finally, observe that π−1(W ) = {W ′ ∈ Rep(Qop,d)|∂̃1(W ′) = λ} = {W ′ + Ext1(W,W )∨|∂̃1(W ′) = λ}
which gives us the last part of the proposition.

3.2 Generic parameters

In order to further explore the relation between µ−1(λ) = Rep(Πλ,d) and the absolutely indecom-

posable representations of Q, we introduce the following definition and discuss some properties

regarding the fibers of the moment map µ.

Definition 3.5. λ ∈ Z
|V | is said to be generic with respect to the dimension vector d ∈ N

|V | if

λ · d = 0 but λ · β , 0 for all 0 < β < d (β , 0, β , d and 0 ≤ βv ≤ dv for all v ∈ V ).

Remark 3.6. Such a generic λ exists if and only if d is indivisible, that is, if the greatest common

divisor of the components of the dimension vector is 1. To see this, note that the dimension vector
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is not indivisible if there exist β ∈N|V | and c ∈N such that cβ = d. On the other hand, λ · d = 0

implies that λ is orthogonal to d and therefore to β.

Remark 3.7. The latter definition implies that, over an algebraically closed field, the notions of λ-

semistability and λ-stability, in the sense of Definition 2.14, coincide. That is to say, Rep(Q,d)λ−ss =

Rep(Q,d)λ−s for λ ∈ Z|V | generic with respect to d. Indeed, if W ∈ Rep(Q,d)λ−ss, then for all sub-

representation W ′ of W we must have that dimW ′ · λ ≥ 0 but, since λ is generic, this inequality

must be strict so W is actually λ-stable.

Proposition 3.8. Let λ ∈ Z|V | be generic for the dimension vector d and W ∈ Rep(Q,d)λ−s, then

End(W ) = k.

Proof. Let µ denote the slope of W (see Remark 2.15). One can show that the subcategory of λ-

semistable representations of slope equal to µ is full and abelian [Rei08, Section 4]. This means

that for all quiver representation morphism f : W →W both kerf and imf must be λ-semistable

and have slope equal to µ. However, µ = 0 since λ is generic with respect to d and therefore f

is either the zero morphism or an isomorphism. Finally, if f is an isomorphism, then f must be

given by the multiplication by a non-zero scalar as k is algebraically closed field which concludes

the proof.

What is more, for fields of characteristic zero or sufficiently large positive characteristic we

can identify the representations of the preprojective algebra, Πλ, contained in the latter sets with

the whole set Rep(Πλ,d):

Lemma 3.9. [CBVdB04, Lemma 2.1.3] Let λ ∈Z|V | be generic with respect to the dimension vector

d. Then, for a field k of characteristic zero or sufficiently large prime characteristic, we have

Rep(Πλ,d) = Rep(Πλ,d)λ−ss = Rep(Πλ,d)λ−s .

Proof. First, by Lemma 3.2, observe that representations in the set Rep(Πλ,d)λ−s(k) are simple.

Thus, it suffices to prove this claim after base changing to an algebraic closure of k since simple

elements, hence λ-stable and λ-semistable, of Rep(Πλ,d)(k) will remain simple if we see them as

elements of Rep(Πλ,d)(k).

If Rep(Πλ,d′)(k) , ∅, then λ · d′ = 0 holds in k by Lemma 3.2. But λ is generic with respect

to d, then for all d′ < d we have d′ · d , 0 in k, for k of characteristic 0 or p ≫ 0. Therefore, any

k-representation in Rep(Πλ,d)(k) is λ-semistable and λ-stable as it has no subrepresentations.

Remark 3.10. One can use the same argument to see that the last lemma holds for every param-

eter t , 0 ∈ k|V | in the line joining 0 and λ.

One of the main reasons we are interested in indivisible dimension vectors and generic pa-

rameters is the following:

Lemma 3.11. Let λ ∈Z|V | be generic with respect to the dimension vector d ∈Z|V |. Then:
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1. For the restricted projection map

π : Rep(Πλ,d)→ Rep(Q,d)

we have that π(Rep(Πλ,d)) consist of indecomposable representations.

2. The set of k-points of this image is equal to the subset of absolutely indecomposable k-

representations of Rep(Q,d).

Proof. For the first part of the lemma we assume, by contradiction, that W ∈ π(Rep(Πλ,d)) is

decomposable, then, by Proposition 3.4, for every direct summand W ′ of W we must have that

dimW ′ ·λ = 0 which contradicts the genericity of λ.

Now we prove the second statement of the lemma. Let W ∈ Rep(Q,d) be an absolutely inde-

composable k-representation. By Definition, this means that if we look at W as a representation

over k, it is still indecomposable (see Definition 1.17). Hence, by Proposition 3.4, W belongs to

π(Rep(Πλ,d))(k). Conversely, let W be a k-point of π(Rep(Πλ,d)), then, by the first statement of

this lemma, W is indecomposable as a representation over k. Assume by contradiction that W

is decomposable as a k-representation then, by scalar extension, W will be decomposable as a

k-representation which is absurd.

3.3 One-parameter families

Let λ ∈ Z|V | generic with respect to the dimension vector d and L �A
1
k be the line joining 0 and

λ. We consider the family of fibres of the moment map (see Equation 3.2) over L and define

Ξ := µ−1(L)∩Rep(Q,d)λ−ss �χλ
Gd .

The moment map induces a Gd-equivariant application µ−1(L) → L which in turn gives a mor-

phism f : Ξ→ L such that

Xt := f −1(t) = µ−1(t)∩Rep(Q,d)λ−ss �χλ
Gd .

We will refer to the variety X0 as the special fiber and, for t , 0, we will call Xt the generic fiber.

Lemma 3.12. There exists a non-empty open subset U ⊆ Spec Z such that the family f : Ξ|U → L|U
is smooth [CBVdB04, Lemma 2.1.3].

Proof. Here we think of Ξ and L as schemes over Z rather than over the field k. Indeed, what we

discuss in Section 4.4 remains true for schemes over Z. So, by the spreading out theorem, it is

enough to check smoothness after base changing to Q [Poo17, Theorem 3.2.1]. We first recall, by

Proposition 3.8, that every point W ∈ Rep(Πλ,d) is a simple representation. Therefore, by Lemma

2.2, End(W )(Q) = Q and StabGd (Q) is trivial.
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Now we recall a standard fact of symplectic geometry which reads that if the differential at W

of the Gd action, which is a linear map between tangent spaces gd → T ∗W Rep(Q,d), is an injec-

tion then the moment map µ is smooth at W [CBVdB04, Lemma 2.1.5]. So the discussion in the

previous paragraph implies that the moment map is indeed smooth at W [Bor91, Chapter II,

Proposition 6.7] and, therefore, in the whole set Rep(Q,d)λ−ss ∩µ−1(L).

From above, note that the map Rep(Q,d)λ−ss ∩ µ−1(L) → L must be also smooth. And, on the

other hand, observe that the geometric quotient pG : Rep(Q,d)λ−ss ∩ µ−1(L)→ Ξ (see Section 2.3)

is smooth given that the action of the group Gd on this set is free [Rei08, Proposition 3.5]. Finally,

since the diagram

Rep(Q,d)λ−ss ∩µ−1(L) Ξ

L

pG

f

is commutative, we must have surjectivity on tangent spaces on the map f : Ξ→ L and hence, the

desired smoothness.

Corollary 3.13. For fields of characteristic zero or sufficiently large positive characteristic, the

special fiber, X0, is smooth.

Proof. The proper closed subsets of Spec(Z) are given by finite unions of non-zero prime ideals

of Z so that every open set contains the generic point given by the zero prime ideal. Thus, the

fibers of a morphism of schemes g : X → U , with U ⊂ Spec(Z) open, are X ⊗
Z

Spec(Q) above the

generic point and X ⊗
Z

Spec(Fp) above every pZ ∈U with p , 0.

As base change commutes with the formation of GIT quotients and taking semistable open sets

with respect to a linearization (see Section 4.4) we then have the desired result.

Corollary 3.14. For all t ∈ L, the dimension of the variety Xt is

dim(Xt) = 2− 2⟨d,d⟩Q.

Proof. From Section 2.3 and Remark 3.7 we may identify Xt = (µ−1(t)∩Rep(Q,d)λ−ss)/Gd . Note

that

dim(Xt) = dim(µ−1(t)∩Rep(Q,d)λ−ss)−dim(Gd) = dim(µ−1(t))−dim(Gd).

Here, we have appealed to the fact that Xt is smooth, the Gd-action is free and the dimension of

the open subvariety µ−1(t)∩Rep(Q,d)λ−ss is the same as the dimension of µ(t) [Liu02, Proposition

5.19]. Now, observe that dim(Gd) = dim(GLd)−dim(∆) = dim(GLd)− 1. On the other hand, from

the proof of Lemma 3.12 we can see that t is a regular value of the moment map, µ : Rep(Q,d)→
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gd , therefore, dim(µ−1(t)) = dim(Rep(Q,d)) − dim(Gd) = 2dim(Rep(Q,d)) − dim(Gd). After com-

bining these equalities, we get:

dim(Xt) = 2(dim(Rep(Q,d))−dim(GLd)) + 2.

The desired result follows from the definition of the Euler form (see Remark 1.26).

Theorem 3.15. [CBVdB04, Proposition 2.2.1] Fix k = F p. Let λ ∈Z|V | be generic for the dimension

vector d ∈N|V |. For p >> 0, the number of absolutely indecomposable d-dimensional representa-

tions of the quiver Q over the field Fq, AQ,d(Fq), is given by

AQ,d(Fq) = q−e|Xλ(Fq)|

with e = 1− ⟨d,d⟩Q = 1
2 dim(Xλ) and q = pr .

Proof. We let Rep(Q,d)a.i be the set of absolutely indecomposable representations. From Burn-

side’s formula, see for instance [Hos18, Lemma 5.15], we have that

AQ,d(Fq) = |Repa.i(Q,d)(Fq)/Gd(Fq)| = 1
|Gd(Fq)|

∑
W∈Repa.i(Q,d)(Fq)

|StabGd (Fq)(W )|.

Since StabGd (Fq)(W ) � Aut(W )/∆ we have that |StabGd (Fq)(W )| = q−1|End(W )| by Remark 1.20.

Combining this with Proposition 3.4, which still holds if the field we are working with is not

algebraically closed, gives

AQ,d(Fq) =
q−1

|Gd(Fq)|

∑
(W,W ′)∈µ−1(λ)(Fq)

|End(W )|
|Ext1(W,W )|

.

Now we use Corollary 1.25 to obtain

AQ,d(Fq) =
q−1

|Gd(Fq)

∑
(W,W ′)∈µ−1(λ)(Fq)

q⟨d,d⟩Q = q⟨d,d⟩Q−1 |µ
−1(λ)(Fq)|
|Gd(Fq)|

.

The last step consists in showing that

|µ−1(λ)(Fq)|
|Gd(Fq)|

= |Xλ(Fq)|.

By Proposition 3.8, if (W,W ′) ∈ µ−1(λ) then End(W,W ′) = k and StabGd
(W,W ′) is trivial. This

implies that the action of Gd(Fq) on Rep(Πλ,d)(Fq) is free and therefore

|µ−1(λ)(Fq)|
|Gd(Fq)|

=
∣∣∣∣∣µ−1(λ)(Fq)

Gd(Fq)

∣∣∣∣∣.
In what is left, we will denote by F the extension of the Frobenius automorphism F : k→ k, given
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by x 7→ xq, to Gd and µ−1(λ) [DM91, Chapter 3]. Let O ⊆ µ−1(λ) be an F-stable orbit, then O

contains a Fq-point [DM91, Corollary 3.12] which, as we have seen before, has trivial stabilizer.

Then, the set of points fixed by F, OF ⊆ µ−1(λ)(Fq), is a single Gd(Fq)-orbit [DM91, Proposition

3.21], that is to say, every F-stable orbit contains a unique Gd(Fq)-orbit. Therefore

∣∣∣∣∣µ−1(λ)(Fq)

Gd(Fq)

∣∣∣∣∣ =
∣∣∣∣∣(µ−1(λ)

Gd

)F ∣∣∣∣∣.
Finally, as Xλ is a geometric quotient and XF

λ = Xλ(Fq) (the set of points fixed by the Frobenius

automorphism are precisely the Fq-points of the variety [Let18, Lemma 5]) we will have that

∣∣∣∣∣(µ−1(λ)
Gd

)F ∣∣∣∣∣ = |XF
λ | = |Xλ(Fq)|

which concludes the proof.
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Chapter 4

Counting absolutely indecomposable
representations

In the previous chapter we saw that if we know that number of Fq-points of Xλ then we can

calculate AQ,d(Fq). Unfortunately, there is no much more information we can get from Xλ and

this is why we fitted Xλ in the one-parameter family f : Ξ → L. This chapter revolves around

relating the number of Fq-points of the generic and special fibers. After this, we will see that

the Fq-point count of X0 can be quite simplified as the Frobenius morphism action on its étale

cohomology groups satisfies special properties. Finally, at the end of the chapter, we will put all

together and give the promised formula for AQ,d(Fq).

4.1 Hyperkähler structure on quiver varieties

In this section we work over the field of complex numbers. Our purpose is to introduce the hyper-

kähler structure associated to the cotangent bundle T ∗Rep(Q,d) � Rep(Q,d). After this, we will

discuss a useful application of this to the problem at hand, which is computing AQ,d(Fq). The

main references we follow are [Hos18, Section 4.2 and Section 5.1] and [CBVdB04, Section 2.3].

Consider the hermitian form H : Rep(Q,d)×Rep(Q,d)→C given by

H(X,Y ) =
∑
α∈E

Tr(XαY
T
α )

which gives us a symplectic form on Rep(Q,d) and a canonical identification Rep(Q,d) � Rep(Q,d)∨.

The isomorphism C×C �H is obtained via the map (z1, z2) 7→ z1−jz2 so that we have an identifica-

tion T ∗Rep(Q,d) � Rep(Q,d)×Rep(Q,d) �H
n for some n ∈N. Right multiplication, by the quater-

nions i, j,k, on H
n induces, respectively, the complex structures I,J,K on T ∗Rep(Q,d) � Rep(Q,d).

As a matter of fact

I(Xα)α∈E = (iXα)α∈E , J(Xα ,Xα∗)α∈E = (−XT
α∗ ,X

T
α )α∈E and K(Xα ,Xα∗)α∈E = (−iXT

α∗ , iX
T
α )α∈E
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and these endow T ∗Rep(Q,d) with a hyperkähler structure.

The hyperkähler metric g is, by definition, the real part of the quaternionic inner product ⟨z,w⟩ =∑n
l=1 zlwl on H

n where wl stands for the quaternionic conjugate of wl , that is, the map a+ ib+ jc+

kd 7→ a− ib − jc − kd. So this metric will be given , for the cotangent bundle T ∗Rep(Q,d), by

g(X,Y ) = Re
(∑
α∈E

Tr(XαY
T
α )

)
.

One can write ⟨−,−⟩ = g − iωI − jωJ − kωK where ωI,ωJ,ωK are symplectic forms defined as ωI =

g(I−,−) and so on. Indeed

ω
R

(X,Y ) := ωI(X,Y ) = Im
(∑
α∈E

Tr(X
T
αYα)

)

and ω
C

:= ωJ + iωK is the symplectic form in Equation 3.3.

We now observe that the hermitian form H is invariant with respect to the action of the max-

imal compact subgroup Ud :=
∏

v∈V U(αv) < GLd on Rep(Q,d). Then the induced Ud-action

on T ∗Rep(Q,d) preserves the symplectic forms ωI,ωJ and ωK and so there are associated mo-

ment maps µI,µJ,µK : T ∗Rep(Q,d) → u∨d , where u∨d stands for the Lie algebra of Ud , defined by

µI(X)(Y ) = −1
2ωI(X,YX) and so on. Moreover, if we identify ud � u∨d via the trace pairing we can

write

µ
R

(X) := µI(X) =
i
2

∑
α∈E

[Xα ,X
T
α ]

and observe that µ
C

:= µJ + iµK is the moment map in Equation 3.2. Now that we have briefly

reviewed the hyperkähler structure associated to T ∗Rep(Q,d) we can state the main result of this

section.

Proposition 4.1. The family f : Ξ→ L is topologically trivial [CBVdB04, Lemma 2.3.3].

Proof. We start by combining the three moment maps described above into the so called hyper-
kähler moment map:

µHK : Rep(Q,d)→ Im(H)⊗
R
u∨d

X 7→ i ⊗µI(X) + j ⊗µJ(X) + k ⊗µK(X).

Now, observe that µHK is H
∗-equivariant with respect to the left action of H∗ on Im(H) given by

β ·α = βαβ. Indeed, µHK(X · β) = βµHK(X)β for any X ∈ Rep(Q,d) and β ∈H∗.

The restriction of the H
∗-action to the set Im(H)0 := Im(H) \ {0} is transitive so for a fixed

α ∈ Im(H)0, the map − ·α : H∗→ Im(H)0 admits a continuous section s : C→H
∗ for C ⊂ Im(H)0

contractible which contains α. Then, for any coadjoint fixed point λ ∈ u∨d , there is a local contin-
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uous trivialization
µ−1

HK(α ⊗λ)×C � µ−1
HK(C ⊗λ)

(X,c) 7→ X · s(c)

which is Ud-equivariant and therefore there is a homeomorphism

(µ−1
HK(α ⊗λ)×C)/Ud � µ−1

HK(C ⊗λ)/Ud .

We consider α = i and the subset C = {i + jC} � C. By construction we have that µ−1
HK(α ⊗ λ) =

µ−1
R

(λ)∩µ−1
C

(0) and µ−1
HK(C⊗λ) = µ−1

R
(λ)∩µ−1

C
(Cλ) = µ−1

R
(λ)∩µ−1

C
(L) so that the previous discussion

gives us a trivialization

(µ−1
R

(λ)∩µ−1
C

(0))/Ud ×C � (µ−1
R

(λ)∩µ−1
C

(L))/Ud .

Finally, we remark that the Kempf-Ness theorem [MFK94, Theorem 8.3] can be generalized to

the GIT quotients obtained from linearizations and the moment maps coming from hyperkähler

structures. This gives us the homeomorphism

X0 ×C � Ξ.

We refer the reader to [Kir16, Section 9.10] for a more detailed exposition of this version of the

Kempf-Ness theorem.

4.2 Étale cohomology and point counting over finite fields

Let X be a variety over F q. By an Fq-structure on X we mean a variety X ′ over Fq such that

X � X ′ ×
Fq

Spec(F q). As pointed out in the proof of Theorem 3.15, an F q-structure comes

equipped with a morphism F : X → X, known in the literature as the geometric Frobenius mor-
phism, which can be regarded as an extension of the usual Frobenius automorphism and whose

fixed locus is the set of Fq-points or rational points of the variety X. We refer the reader to [DM91,

Chapter 3] for a more detailed exposition of what we have just discussed.

The Grothendieck trace formula is a classical result regarding rational point counting in a vari-

ety defined over a field of positive characteristic. It reads as follows:

Theorem 4.2. Let X = X ′×
Fq

Spec(F q) be an smooth variety over F q endowed with an Fq-structure

and let F : X→ X be the associated geometric Frobenius. Then, for char(Fq) , l,

|X ′(Fqn)| =
2dimX∑
i=0

(−1)iTr(Fn|H i
c(X,Ql)).

Here,

Fn : H i
c(X,Ql)→H i

c(X,Ql)
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stands for the linear map of Ql-vector spaces induced by the n-th iteration of the geometric Frobe-

nius and the H i
c(X,Ql) correspond with the compactly supported l-adic cohomology groups of X

[Del77, Rapport, Theorem 3.2].

Let us discuss further on the cohomology groups involved in the last theorem. As the usual

compactly supported singular cohomology groups for varieties defined over the complex num-

bers, these cohomology groups have the following properties [Hos18, Section 5.3], [Mil13, Chap-

ter 1]:

• (Finiteness) H i
c(X,Ql) are finite dimensional Ql-vector spaces.

• (Functoriality) For every proper morphism ϕ : X → Y there is a map ϕ∗ : H i
c(Y ,Ql) →

H i
c(X,Ql).

• (Dimensionality) H i
c(X,Ql) = 0 for i > 2dimX.

• (Gysin sequences) For any decomposition X = Z ⊔U with Z closed, there is a long exact

sequence
· · · H i

c(U,Ql) H i
c(X,Ql) H i

c(Z,Ql) H i+1
c (U,Ql) · · · .

• (Leray spectral sequences) For a rank n vector bundle X → Y we have an isomorphism

H i
c(X,Ql) �H i−2n

c (Y ,Ql)⊗H2
c (A1,Ql)⊗n.

• (Poincaré duality) For smooth varieties we have H i(X,Ql) �H2dimX−i
c (X,Ql).

In order to conclude something out of the formula in Theorem 4.2 one needs to understand well

the eigenvalues of the linear map induced by the geometric Frobenius morphism. Weil’s conjec-

tures, proved by Deligne, imply that if X is smooth and proper, then these eigenvalues have all

absolute value qi/2 for all choice of embedding Ql ↪→ C [Del74, Theorem 1.6]. This prompts the

following definition:

Definition 4.3. The variety X is said to be (cohomologically) pure if all the eigenvalues of the linear

map F : H i
c(X,Ql)→H i

c(X,Ql) have absolute value qi/2.

Now, let us introduce a definition, which combined with the one of purity eases many com-

putations.

Definition 4.4. Let X = X ′×
Fq

Spec(Fq) be a F q−variety together with an Fq-structure. We say that

X ′ is polynomial count if there exists a polynomial p(t) ∈Q[t] such that for all r > 0, |X ′(Fqr )| = p(qr ).

Lemma 4.5. [CBVdB04, Lemma A.1] Assume that X is smooth, pure and polynomial count with

counting polynomial being p(t) ∈Q[t]. Then:

1. X does not have odd cohomology.

2.

p(q) =
dimX∑
i=0

dimH2i
c (X,Ql)q

i

and in particular p(t) ∈N[t] .
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Example 4.6. Consider the projective space over Fq. By direct calculation we can see that

|Pn(Fq)| = 1 + q+ . . .+ qn

which agrees with the previous lemma as the etale cohomology groups of Pn are

H i
c(P

n,Ql) =

Ql if i is even,

0 if i is odd.

4.3 Purity of the special fiber

The purpose of this section is to show that the variety X0 is pure. Let us recall, from Section 3.3,

that

X0 = µ−1(0)∩Rep(Q,d)λ−ss �χλ
Gd

and, from Section 2.3, that there is a projective morphism p : X0 → Aff(X0) := µ−1(0) � Gd . The

idea is to see that there is an induced action of the torus, Gm, on these varieties which gives rise

to a Bialynicki-Birula decomposition. This decomposition together with the properties of étale

cohomology discussed in the previous section will allow us to conclude on the desired purity. We

start with a useful definition introduced in [HRV15].

Definition 4.7. A Gm-action on a smooth quasi-projective variety X is said to be semi-projective if

XGm is projective and for all x ∈ X, limt→0 t · x exists in X .

The torus Gm acts on Rep(Q,d) by scalar mulitplication and the unique fixed point is the ori-

gin. In fact, the limit of every point in Rep(Q,d) under the action of t ∈Gm as t→ 0, exists and is

equal to the origin so this action is semi-projective. Moreover, the action commutes with the GLd

action on Rep(Q,d) and the algebraic moment map is Gm-equivariant with respect to this action

and the weight 2 action of Gm on the lie algebra gld . Hence, there is an induced action of Gm on

µ−1(0) and the GIT quotients X0 and Aff(X0) such that p : X0→ Aff(X0) is Gm-equivariant [Hos18,

Section 5.2].

With the previous discussions in mind one can show:

Proposition 4.8. The scaling action Gm on X0 is semi-projective [Hos18, Proposition 5.7].

Proposition 4.9. Let X be a smooth quasi-projective variety together with a semiprojective Gm-

action, then X is pure [CBVdB04, Proposition A.2].

Proof. Let XGm =
⋃

j∈J Xj be the decomposition of the fixed locus into connected components. The

hypotheses imply that there is a Bialynicki-Birula decomposition [BB73, Theorem 4.1]:

X =
⊔
j∈J

X+
j
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where X+
j = {x ∈ X | limt→0 t · x ∈ Xj} and the limit map X+

j → Xj is a vector bundle. Moreover,

since X is quasi-projective, there is a filtration

∅ = Y0 ⊂ Y1 ⊂ . . . ⊂ Yn = X

such that Yi+1 \Yi is equal to one of the X+
j [BB76, Theorem 3].

By hypothesis, we have that the smooth varieties Xj are projective and, therefore, they are pure

[Del74, Theorem 1.6]. One can see that H i
c(A

1,Ql) is a one-dimensional vector space for i = 2

and zero-dimensional for i < 2. Therefore F∗ : H2
c (A1,Ql)→ H2

c (A1,Ql) is the morphism given

by multiplication by a scalar λ. By the Grothendieck trace formula we can then conclude that

λ = q. Thus, by the etale cohomology property on Leray spectral sequences in Section 4.2, we

can deduce that the X+
j are also pure since the eigenvalues of the Frobenius morphism acting on

H i
c(X

+
j ,Ql) �H i−2n

c (Xj ,Ql)⊗H2
c (A1,Ql)⊗n have absolute value equal to q(i−2n)/2qn = qi/2.

The last step is to work with the aforementioned filtration and the Gysin sequences introduced in

the previous section. At each stage of the filtration we obtain, by the purity of X+
j , a short exact

sequence of vector spaces which splits and gives purity for all Yj . Indeed, note that Y1 = X+
j1

and

Y2 \Y1 = X+
j2

for some j1, j2 ∈ J . Then, we have the short exact sequence:

0 H2i
c (X+

j1
,Ql) H2i

c (Y2,Ql) H2i
c (X+

j2
,Ql) 0.

which gives the isomorphism H2i
c (Y2,Ql) � H2i

c (X+
j1
,Ql) ⊕H2i

c (X+
j2
,Ql) and the purity of Y2. By

repeating this process we can conclude that Yn = X is pure.

Corollary 4.10. The special fiber, X0, is pure.

Proof. This follows from a direct application of the last two propositions.

4.4 Relating the cohomology of the special and generic fibers

In this section, we would like to relate the cohomology groups of the special and generic fibers

of the one-parameter family f : Ξ → L and by doing this, the counts |X0(Fq)| and |Xλ(Fq)|. To

do so, we will need to base change the schemes at hand between the field of complex numbers

and various finite fields. However, we are working with GIT quotients and taking invariants and

semistable sets does not commute with base changing over arbitrary rings. For us, it will be suf-

ficient to check this commutativity over a special finitely generated Z-algebra.

The Z-algebra we will be working with is R := Z[1/N ] for N ∈Z such that p ∤N . If G is a reductive

group scheme over R acting on a quasi-projective R-variety, X, with respect to the linearisation

induced by a character, the formation of the GIT quotient commutes with the base changes previ-

ously discussed. More explicitly, we have the following result due to Seshadri [Ses77] and which

we will present as in [CBVdB04, Appendix B].

35



Theorem 4.11. Under the hypothesis of the previous paragraph, there is a non-empty open sub-

scheme U ⊂ Spec(Z[1/N ]) over which taking GIT semistable sets and GIT quotients commutes

with base change. That is, for all points s : Spec(k)→U , we have

Xss×
Z[ 1

N ]Spec(k) = (X×
Z[ 1

N ]Spec(k))ss and (X�G)×
Z[ 1

N ]Spec(k) � (X×
Z[ 1

N ]Spec(k))�(G×
Z[ 1

N ]Spec(k)).

We now specialize all this to the quiver varieties setting. The framework is the following: we

can define the affine space Rep(Q,d), the group GLd , the moment map µ and the corresponding

GIT quotients, Xλ and X0, over the finitely generated Z-algebra Z[1/N ]. It is worth mentioning

that to consider these GIT quotients over this Z-algebra is possible thanks to Seshadri’s general-

ization of GIT to arbitrary base rings [Ses77, Section 1.2].

On the other hand, observe that an open subset U ⊂ Spec(Z[1/N ]) is of the form U = Spec(Z[1/M])

for some N |M. Since p ∤ N we can base change to Fp and all its field extensions [Hos18, Section

5.6]. By considering the generic point of U , we see that we can base change to Q and all its fields

extensions, such as C. In brief, we have the following base changes

X
F p

X
Fpr

X X
C

Spec(F p) Spec(Fpr ) Spec(Z[ 1
N ]) Spec(C)

and for N large enough, these base changes commute with GIT quotients and semistable sets by

the previous theorem.

Proposition 4.12. For a finite field Fq of sufficiently large characteristic p, we have

|X0(Fq)| = |Xλ(Fq)|.

Proof. The strategy of Crawley-Boevey and Van der Bergh is to show that the etale cohomology

groups of the special and generic fibers coincide when the characteristic of the field is taken to be

large enough. We now briefly explain the proof of this fact.

As in Lemma 3.12, we assume that Ξ and L are defined over Z so the first step is to check that

Rif!(Ql) is constant over an open subset of the base Spec(Z) [CBVdB04, Proposition 2.3.1]. To

see this, one uses Deligne’s generic base change theorem for direct images [Del77, Th. Finitude,

Theorem 1.9], the topological triviality of the family f : Ξ→ L over C that we showed in Proposi-

tion 4.1 and the comparison theorem between etale and singular cohomologies [BBD82, Chapter

6 Section 1.2].

Using the previous result and the fact that Rif! commutes with base change one can see, for

p ≫ 0 that Rif0!Ql � Rifλ!Ql on Spec(Fp) where f0 and fλ are the restrictions of the morphism

f to the special and generic fibers respectively. Now, one can see that Rif0!(Ql) � H i
c(X0,F q

,Ql)
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and Rifλ!(Ql) � H i
c(Xλ,F q

,Ql) so that H i
c(X0,F q

,Ql) � H i
c(Xλ,F q

,Ql). One of the key points is that

this isomorphism is compatible with the action of the Frobenius morphism which means that the

rational point count that we will obtain by the Grothendieck trace formula, in Theorem 4.2, will

be the same.

There is however, another proof of this fact, due to Nakajima [CBVdB04, Appendix by Hiraku

Nakajima], involving the Bialynicki-Birula decomposition of both the total space of the family

f : Ξ → L and the special fiber, X0, with respect to an action of the torus, Gm, on Ξ which we

now review. This action, introduced by Nakajima in [Nak94, Section 5], is such that f is Gm-

equivariant with respect to the weight one action of the torus on the affine line L and such that

for every ξ ∈ Ξ, limt→0 t · ξ exists.

The first observation is that Xt1 is isomorphic to Xt2 for all non-zero t1, t2 ∈ L � A
1
k . Thus, for

us will be enough to show that |X0(Fq)| = |X1(Fq)|. Let ΞGm =
⋃

j∈J Yj be the decomposition of

the fixed locus of the Gm-action into connected components. Clearly, each of the Yj is a smooth

projective variety contained in X0 as the map f is Gm-equivariant with respect to the weight one

action of the torus on L. The Bialynicki-Birula decomposition of Ξ [BB73, Theorem 4.1] is then

given by: Ξ =
⊔

j∈J Ξj where Ξj = {ξ ∈ Ξ| limt→0 t · ξ ∈ Yj} and the limit map Ξj → Yj is a vector

bundle. Thus we have that

|Ξ(Fq)| =
∑
j∈J
|Ξj(Fq)| =

∑
j∈J

qnj |Yj(Fq)|

where nj stands for the rank of the aforementioned vector bundles.

One can also consider the Bialynicki-Birula decomposition of the special fiber, X0 =
⊔

j∈J X0,j

where the X0,j are defined as usual and the limit maps X0,j → Yj are as well vector bundles. Now,

the key observation here is that the tangent space of Ξ, at a point in ΞGm , decomposes as the sum

of the tangent space of X0, which corresponds to the fiber direction, plus a one-dimensional space

corresponding to the base direction. Thus, X0,j → Yj is a vector bundle of rank nj − 1. It follows

that

|X0(Fq)| =
∑
j∈J
|X0,j(Fq)| =

∑
j∈J

qnj−1|Yj(Fq)| = 1
q
|Ξ(Fq)|.

Finally, note that

|Ξ(Fq)| =
∑
λ∈Fq

|Xλ(Fq)| = (q − 1)|X1(Fq)|+ |X0(Fq)|.

By combining the previous two equalities we obtain the desired result.
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4.5 Kac’s conjectures and count of absolutely indecomposable repre-

sentations

Before stating the main result of this memoir, we recall a result due to Kac which was one of the

motivations for the work of Crawley-Boevey and Van der Bergh [CBVdB04].

Theorem 4.13. The number of absolutely indecomposable quiver representations over Fq,AQ,d(Fq),

does not depend on the orientation of Q. Moreover, AQ,d(Fq) is a polynomial in q with integer

coefficients [Kac83, Chapter 1, Section 13, Lemma].

The following theorem, besides providing us with a formula to count the absolutely inde-

composable representations we are interested in, also shows a conjecture by Kac regarding the

positivity of the coefficients of the polynomial AQ,d(Fq) under some assumptions [Kac83, Chap-

ter 1, Section 15, Conjecture 2].

Theorem 4.14. Let Q be a quiver without loops and d ∈ N
|V | an indivisible dimension vector.

For a generic stability parameter λ with respect to d and for a finite field of sufficiently large

characteristic, we have

AQ,d(Fq) =
e∑

i=0

dimH2e−2i(X0,C)qi

where e = 1
2 dimX0 and X0 is the moduli space of λ-stable representations in Rep(Π0,d).

Proof. Let Fq be a finite field of characteristic p sufficiently large such that Lemma 3.12 and

Theorem 4.11 hold. By Theorem 3.15 and Theorem 4.13 we deduce that the Fq-variety Xλ is

polynomial count with counting polynomial given by the equality

AQ,d(Fq) = q−e|Xλ(Fq)|.

Since p is sufficiently large, by Proposition 4.12, this point count coincides with the one of the

special fiber X0. Recall, by Corollary 4.10, that X0 is pure and since smooth, by Lemma 4.5,

AQ,d(Fq) =
2e∑
i=0

dimH2i
c (X0,Ql)q

i−e

where e = 1
2 dimX0 and l , p prime.

We can consider the family f : Ξ → L over Z[1/N ], with N sufficiently large such that p ∤ N ,

as in the past section. Thus, we can base change X0 from F q to C and obtain a complex variety

X0,C. Is important to observe that this variety, by the GIT commutativity stated in Theorem 4.11,

is the special fiber of the one-parameter family f : Ξ→ L when the ground field is taken to be

the field of complex numbers. Thus, by the smooth base change theorems and the comparison
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theorems [Mil80, Chapter VI, Corollary 4.2], [BBD82, Chapter 6 Section 1.2] we obtain

AQ,d(Fq) =
2e∑
i=0

dimH2i
c (X0,C,C)qi−e =

e∑
i=0

dimH2i+2e
c (X0,C,C)qi .

Here, the right-most equality is obtained from the fact that AQ,d(Fq) must be a polynomial in

q and the cohomology groups are the singular cohomology groups of the complex variety X0,C.

From Poincaré duality, for the smooth variety X0,C, we then have

AQ,d(Fq) =
e∑

i=0

dimH2e−2i(X0,C,C)qi

which is the desired result.
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